LC
Lucy Crooks
Author with expertise in Standards and Guidelines for Genetic Variant Interpretation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
3,972
h-index:
18
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Synaptic, transcriptional and chromatin genes disrupted in autism

Silvia Rubeis et al.Oct 29, 2014
+88
A
X
S
The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action potentials, pacemaking and excitability–transcription coupling, as well as histone-modifying enzymes and chromatin remodellers—most prominently those that mediate post-translational lysine methylation/demethylation modifications of histones. Whole-exome sequencing in a large autism study identifies over 100 autosomal genes that are likely to affect risk for the disorder; these genes, which show unusual evolutionary constraint against mutations, carry de novo loss-of-function mutations in over 5% of autistic subjects and many function in synaptic, transcriptional and chromatin-remodelling pathways. Autism spectrum disorder (ASD) is a broad group of brain development disorders, including autism, childhood disintegrative disorder and Asperger's syndrome, characterized by impaired social interaction and communication, repetitive behaviour and restricted interests. Two groups reporting in this issue of Nature have used large-scale whole-exome sequencing to examine the contribution of inherited and germline de novo mutations to ASD risk. Silvia De Rubeis et al. analysed DNA samples from 3,871 autism cases and 9,937 ancestry-matched or parental controls and identify more than 100 autosomal genes that are likely to affect risk for the disease. De novo loss-of-function mutations were detected in more than 5% of autistic subjects. Many of the associated gene products appear to function in synaptic, transcriptional, and chromatin remodelling pathways. Ivan Iossifov et al. sequenced exomes from more than 2,500 families, each with one child with ASD. They identify 27 high-confidence gene targets and estimate that 13% of de novo missense mutations and 43% of de novo 'likely gene-disrupting' (LGD) mutations contribute to 12% and 9% of diagnoses, respectively.
0
Citation2,457
0
Save
0

The UK10K project identifies rare variants in health and disease

Klaudia Walter et al.Sep 14, 2015
+84
J
J
K
The contribution of rare and low-frequency variants to human traits is largely unexplored. Here we describe insights from sequencing whole genomes (low read depth, 7×) or exomes (high read depth, 80×) of nearly 10,000 individuals from population-based and disease collections. In extensively phenotyped cohorts we characterize over 24 million novel sequence variants, generate a highly accurate imputation reference panel and identify novel alleles associated with levels of triglycerides (APOB), adiponectin (ADIPOQ) and low-density lipoprotein cholesterol (LDLR and RGAG1) from single-marker and rare variant aggregation tests. We describe population structure and functional annotation of rare and low-frequency variants, use the data to estimate the benefits of sequencing for association studies, and summarize lessons from disease-specific collections. Finally, we make available an extensive resource, including individual-level genetic and phenotypic data and web-based tools to facilitate the exploration of association results.
0
Citation1,084
0
Save
0

Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders

Tarjinder Singh et al.Mar 14, 2016
+58
D
M
T
The authors analyzed the whole-exome sequences of over 16,000 individuals and found that very rare variants predicted to disrupt the SETD1A gene confer substantial risk for schizophrenia. Damaging variants in SETD1A were also associated with diverse, severe developmental disorders, providing an important genetic link between schizophrenia and other neurodevelopmental disorders. By analyzing the whole-exome sequences of 4,264 schizophrenia cases, 9,343 controls and 1,077 trios, we identified a genome-wide significant association between rare loss-of-function (LoF) variants in SETD1A and risk for schizophrenia (P = 3.3 × 10−9). We found only two heterozygous LoF variants in 45,376 exomes from individuals without a neuropsychiatric diagnosis, indicating that SETD1A is substantially depleted of LoF variants in the general population. Seven of the ten individuals with schizophrenia carrying SETD1A LoF variants also had learning difficulties. We further identified four SETD1A LoF carriers among 4,281 children with severe developmental disorders and two more carriers in an independent sample of 5,720 Finnish exomes, both with notable neuropsychiatric phenotypes. Together, our observations indicate that LoF variants in SETD1A cause a range of neurodevelopmental disorders, including schizophrenia. Combining these data with previous common variant evidence, we suggest that epigenetic dysregulation, specifically in the histone H3K4 methylation pathway, is an important mechanism in the pathogenesis of schizophrenia.
0
Citation431
0
Save
0

Rare loss-of-function variants in KMT2F are associated with schizophrenia and developmental disorders

Tarjinder Singh et al.Jan 12, 2016
+59
D
M
T
Schizophrenia is a common, debilitating psychiatric disorder with a substantial genetic component. By analysing the whole-exome sequences of 4,264 schizophrenia cases, 9,343 controls, and 1,077 parent-proband trios, we identified a genome-wide significant association between rare loss-of-function (LoF) variants in KMT2F and risk for schizophrenia. In this dataset, we observed three de novo LoF mutations, seven LoF variants in cases, and none in controls (P=3.3x10^(-9)). To search for LoF variants in KMT2F in individuals without a known neuropsychiatric diagnosis, we examined the exomes of 45,376 individuals in the ExAC database and found only two heterozygous LoF variants, showing that KMT2F is significantly depleted of LoF variants in the general population. Seven of the ten individuals with schizophrenia carrying KMT2F LoF variants also had varying degrees of learning difficulties. We further identified four KMT2F LoF carriers among 4,281 children with diverse, severe, undiagnosed developmental disorders, and two additional carriers in an independent sample of 5,720 Finnish exomes, both with notable neuropsychiatric phenotypes. Together, our observations show that LoF variants in KMT2F cause a range of neurodevelopmental disorders, including schizophrenia. Combined with previous common variant evidence, we more generally implicate epigenetic dysregulation, specifically in the histone H3K4 methylation pathway, as an important mechanism in the pathogenesis of schizophrenia.