VG
Vincent Giampietro
Author with expertise in Magnetic Resonance Imaging Applications in Medicine
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
2
h-index:
13
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
13

Tissue volume estimation and age prediction using rapid structural brain scans

Harriet Hobday et al.Jan 21, 2022
Abstract The multicontrast EPImix sequence generates 6 contrasts, including a T 1 -weighted scan, in ∼1 minute. EPImix shows comparable diagnostic performance to conventional scans under qualitative clinical evaluation, and similarities in simple quantitative measures including contrast intensity. However, EPImix scans have not yet been compared to standard MRI scans using established quantitative measures. In this study, we compared conventional and EPImix-derived T 1 -weighted scans of 64 healthy participants using tissue volume estimates and predicted brain-age. All scans were pre-processed using the SPM12 DARTEL pipeline, generating measures of grey matter, white matter and cerebrospinal fluid volume. Brain-age was predicted using brainageR , a Gaussian process regression model previously trained on a large sample of standard T 1 -weighted scans. Estimates of both global and voxel-wise tissue volume showed significantly similar results between standard and EPImix-derived T 1 -weighted scans. Brain-age estimates from both sequences were significantly correlated, although EPImix T 1 -weighted scans showed a systematic offset in predictions of chronological age. Supplementary analyses suggest that this is likely caused by the reduced field of view of EPImix scans, and the use of a brain-age model trained using conventional T 1 -weighted scans. However, this systematic error can be corrected using additional regression of T 1 -predicted brain-age onto EPImix-predicted brain-age. Finally, retest EPImix scans acquired for 10 participants demonstrated high test-retest reliability in all evaluated quantitative measurements. Quantitative analysis of EPImix scans holds potential to reduce scanning time, increasing participant comfort and reducing cost, as well as to support automation of scanning, utilising active learning for faster and individually-tailored (neuro)imaging.
38

Rapid processing and quantitative evaluation of multicontrast EPImix scans for adaptive multimodal imaging

František Váša et al.Feb 14, 2021
Abstract Current neuroimaging acquisition and processing approaches tend to be optimised for quality rather than speed. However, rapid acquisition and processing of neuroimaging data can lead to novel neuroimaging paradigms, such as adaptive acquisition, where rapidly processed data is used to inform subsequent image acquisition steps. Here we first evaluate the impact of several processing steps on the processing time and quality of registration of manually labelled T 1 -weighted MRI scans. Subsequently, we apply the selected rapid processing pipeline both to rapidly acquired multicontrast EPImix scans of 95 participants (which include T 1 -FLAIR, T 2 , T 2 *, T 2 -FLAIR, DWI & ADC contrasts, acquired in ∼1 minute), as well as to slower, more standard single-contrast T 1 -weighted scans of a subset of 66 participants. We quantify the correspondence between EPImix and single-contrast T 1 -weighted scans, using correlations between voxels and regions of interest across participants, measures of within- and between-participant identifiability as well as regional structural covariance networks. Furthermore, we explore the use of EPImix for the rapid construction of morphometric similarity networks. Finally, we quantify the reliability of EPImix-derived data using test-retest scans of 10 participants. Our results demonstrate that quantitative information can be derived from a neuroimaging scan acquired and processed within minutes, which could further be used to implement adaptive multimodal imaging and tailor neuroimaging examinations to individual patients. Abstract Figure Graphical abstract.
0

The heterogeneous functional architecture of the posteromedial cortex is associated with selective functional connectivity differences in Alzheimer's disease

Wasim Khan et al.Jul 12, 2019
The posteromedial cortex (PMC) is a key region involved in the development and progression of Alzheimer disease (AD). Previous studies have demonstrated a heterogenous functional architecture of the region, with different subdivisions reflecting distinct connectivity profiles. However, little is understood about PMC functional connectivity and its differential vulnerability to AD pathogenesis. Using a data-driven approach, we applied a constrained independent component analysis (ICA) on healthy adults from the Human Connectome Project (HCP) to characterise the distinct functional subdivisions and unique functional-anatomic connectivity patterns of the PMC. These connectivity profiles were subsequently quantified in the Alzheimers Disease Neuroimaging Initiative (ADNI) study, to examine functional connectivity differences in (1) AD patients and cognitively normal (CN) participants and (2) the entire AD pathological spectrum, ranging from CN participants and participants with subjective memory complaints (SMC), through to those with mild cognitive impairment (MCI), and finally, patients diagnosed with AD. Our findings revealed decreased functional connectivity in the anterior precuneus, dorsal posterior cingulate cortex, and the central precuneus in AD patients compared to CN participants. Functional abnormalities in these subdivisions were also related to high amyloid burden and lower hippocampal volumes. Across the entire AD spectrum, functional connectivity of the central precuneus was associated with disease progression and specific deficits in memory and executive function. These findings provide new evidence showing that specific vulnerabilities in PMC functional connectivity are associated with large-scale network disruptions in AD and that these patterns may be useful for elucidating potential biomarkers for measuring disease progression in future work.