Abstract Immune checkpoint inhibition (ICI) with anti-CTLA-4 and anti-PD-1 has revolutionized oncology; however, response rates remain limited in most cancer types, highlighting the need for more effective immune oncology (IO) treatment strategies. Paradoxically, head and neck squamous cell carcinoma (HNSCC), which bears a mutational burden and immune infiltrate commensurate with cancers that respond robustly to ICI, has demonstrated no response to anti- CTLA-4 in any setting or to anti-PD-1 for locally-advanced disease. Scrutiny of the landmark clinical trials defining current IO treatments in HNSCC reveals that recruited patients necessarily received regional ablative therapies per standard of care, prompting us to hypothesize that standard therapies, which by design ablate locoregional lymphatics, may compromise host immunity and the tumor response to ICI. To address this, we employed tobacco-signature HNSCC murine models in which we mapped tumor-draining lymphatics and developed models for regional lymphablation with surgery or radiation. Remarkably, we found that lymphablation eliminates the tumor ICI response, significantly worsening overall survival and repolarizing the tumor- and peripheral-immune compartments. Mechanistically, within tumor-draining lymphatics, we observed an upregulation of cDC1 cells and IFN-I signaling, showed that both are necessary for the ICI response and lost with lymphablation. Ultimately, we defined rational IO sequences that mobilize peripheral immunity, achieve optimal tumor responses, confer durable immunity and control regional lymphatic metastasis. In sum, we provide a mechanistic understanding of how standard regional, lymphablative therapies impact the response to ICI, which affords insights that can be applied to define rational, lymphatic-preserving IO treatment sequences for cancer. One Sentence Summary Despite the promise of immune checkpoint inhibition, therapeutic responses remain limited, raising the possibility that standard of care treatments delivered in concert may compromise the tumor response; here, we provide a mechanistic understanding of how standard oncologic therapies targeting regional lymphatics impact the tumor response to immune-oncology therapy in order to define rational treatment sequences that mobilize systemic antitumor immunity, achieve optimal tumor responses, confer durable antitumor immunity, and control regional metastatic disease. Graphical Abstract