FP
Fabio Palombo
Author with expertise in Immunobiology of Dendritic Cells
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(67% Open Access)
Cited by:
1,498
h-index:
28
/
i10-index:
51
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
15

COVID-eVax, an electroporated plasmid DNA vaccine candidate encoding the SARS-CoV-2 Receptor Binding Domain, elicits protective immune responses in animal models of COVID-19

Antonella Conforti et al.Jun 14, 2021
Abstract The COVID-19 pandemic caused by the β-coronavirus SARS-CoV-2 has made the development of safe and effective vaccines a critical global priority. To date, four vaccines have already been approved by European and American authorities for preventing COVID-19 but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle, a technology previously utilized for cancer vaccines. We constructed a set of prototype DNA vaccines expressing various forms of the SARS-CoV-2 Spike (S) protein and assessed their immunogenicity in animal models. Among them, COVID- e Vax – a DNA plasmid encoding a secreted monomeric form of SARS-CoV-2 S protein RBD – induced the most potent anti-SARS-CoV-2 neutralizing antibody responses (including against the current most common variants of concern) and a robust T cell response. Upon challenge with SARS-CoV-2, immunized K18-hACE2 transgenic mice showed reduced weight loss, improved pulmonary function and significantly lower viral replication in the lungs and brain. COVID- e Vax conferred significant protection to ferrets upon SARS-CoV-2 challenge. In summary, this study identifies COVID- e Vax as an ideal COVID-19 vaccine candidate suitable for clinical development. Accordingly, a combined phase I-II trial has recently started in Italy.
15
Citation2
0
Save
5

A linear DNA vaccine candidate encoding the SARS-CoV-2 Receptor Binding Domain elicits protective immunity in domestic cats

Antonella Conforti et al.Jul 22, 2022
ABSTRACT Since its first detection in China in late 2019, SARS-CoV-2, the etiologic agent of COVID-19 pandemic, has infected a wide range of animal species, especially mammals, all over the world. Indeed, as reported by the American Veterinary Medical Association, besides human-to-human transmission, human-to-animal transmission has been observed in some wild animals and pets, especially in cats. With animal models as an invaluable tool in the study of infectious diseases combined with the fact that the intermediate animal source of SARS-CoV-2 is still unknown, researchers have demonstrated that cats are permissive to COVID-19 and are susceptible to airborne infections. Given the high transmissibility potential of SARS-CoV-2 to different host species and the close contact between humans and animals, it is crucial to find mechanisms to prevent the transmission chain and reduce the risk of spillover to susceptible species. Here, we show results from a randomized Phase I/II clinical study conducted in domestic cats to assess safety and immunogenicity of a linear DNA (“linDNA”) vaccine encoding the RBD domain of SARS-CoV-2. No significant adverse events occurred and both RBD-specific binding/neutralizing antibodies and T cells were detected. These findings demonstrate the safety and immunogenicity of a genetic vaccine against COVID-19 administered to cats and strongly support the development of vaccines for preventing viral spread in susceptible species, especially those in close contact with humans.
5
Citation1
0
Save
8

Design of a Companion Bioinformatic Tool to detect the emergence and geographical distribution of SARS-CoV-2 Spike protein genetic variants

Alice Massacci et al.Jun 22, 2020
Abstract Background Tracking the genetic variability of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is a crucial challenge. Mainly to identify target sequences in order to generate robust vaccines and neutralizing monoclonal antibodies, but also to track viral genetic temporal and geographic evolution and to mine for variants associated with reduced or increased disease severity. Several online tools and bioinformatic phylogenetic analyses have been released, but the main interest lies in the Spike protein, which is the pivotal element of current vaccine design, and in the Receptor Binding Domain, that accounts for most of the neutralizing the antibody activity. Methods Here, we present an open-source bioinformatic protocol, and a web portal focused on SARS-CoV-2 single mutations and minimal consensus sequence building as a companion vaccine design tool. Furthermore, we provide immunogenomic analyses to understand the impact of the most frequent RBD variations. Results Results on the whole GISAID sequence dataset at the time of the writing (October 2020) reveals an emerging mutation, S477N, located on the central part of the Spike protein Receptor Binding Domain, the Receptor Binding Motif. Immunogenomic analyses revealed some variation in mutated epitope MHC compatibility, T-cell recognition, and B-cell epitope probability for most frequent human HLAs. Conclusions This work provides a framework able to track down SARS-CoV-2 genomic variability.