ZY
Zhen Yan
Author with expertise in Molecular Mechanisms of Heme Biosynthesis and Related Disorders
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
6
(17% Open Access)
Cited by:
2
h-index:
16
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
9

Tailoring CRISPR-Cas Immunity for the Degradation of Antibiotic Resistance Genes

Xin Li et al.Mar 11, 2022
Abstract The evolution and dissemination of antibiotic resistance genes (ARGs) are prompting severe health and environmental issues. While environmental processes are key barriers preventing the spread of ARGs, they are often sources of ARGs at the same time, as ARGs may be required and accumulate in the biological treatment units. An upgrading of environmental biotechnology is imperative and urgent. ARGs confer antibiotic resistance based on the DNA sequences rather than the chemistry of DNA molecules. An ARG can be considered degraded if its sequence was disrupted. Therefore, we present here that CRISPR-Cas immunity, an archaeal and bacterial immune system for eliminating invading foreign DNAs, can be repurposed and tailored for the degradation of ARGs. By deploying an artificial IncP machinery, the designed system, namely VADER, can be successfully delivered via bacterial conjugation. Then, we propose a new sector for ARG degradation to be implemented as a complement to the biological units in the framework of environmental processes. In this endeavor, a prototype conjugation reactor at a 10-mL-scale was devised, and 100% of the target ARG were eliminated in the transconjugated microbes receiving VADER in the reactor. By generating a nexus of synthetic biology and environmental biotechnology, we believe that our work is not only an enterprise for tackling ARG problems but also a potential solution for managing undesired genetic materials in general in the future. Importance Antibiotic resistance has been causing severe health problems and leading to millions of deaths in recent years. Environmental processes, especially the wastewater treatment sector, are important to barrier the spread of antibiotic resistance from the pharmaceutical industry, hospitals, or civil sewage. However, they have been identified as the source of antibiotic resistance at the same time, as antibiotic resistance with its main cause antibiotic resistance genes (ARGs) may be required and accumulate in the biological treatment units, leading to the dissemination of ARGs. Here, we transplanted the CRISPR-Cas system, an immune system via programmable DNA cleavage, to environmental biotechnology for tackling the antibiotic resistance dilemma thereof, and we propose a new sector in environmental processes specialized in ARG removal with a reactor inhabiting the CRISPR-Cas system per se. Our study provides a new angle to resolve public health issues via the implementation of synthetic biology at the process level.
9
Citation1
0
Save
0

Chemical Dynamics of Selenium Nanoparticles in Archaeal Systems

Xiao-Yu Liu et al.Jun 6, 2024
Methanogenic archaea, characterized by their cell membrane lipid molecules consisting of isoprenoid chains linked to glycerol-1-phosphate via ether bonds, exhibit exceptional adaptability to extreme environments. However, this distinct lipid architecture also complicates the interactions between methanogenic archaea and nanoparticles. This study addresses this challenge by exploring the interaction and transformation of selenium nanoparticles (SeNPs) within archaeal Methanosarcina acetivorans C2A. We demonstrated that the effects of SeNPs are highly concentration-dependent, with chemical stimulation of cellular processes at lower SeNPs concentrations as well as oxidative stress and metabolic disruption at higher concentrations. Notably, we observed the formation of a protein corona on SeNPs, characterized by the selective adsorption of enzymes critical for methylotrophic methanogenesis and those involved in selenium methylation, suggesting potential alterations in protein function and metabolic pathways. Furthermore, the intracellular transformation of SeNPs into both inorganic and organic selenium species highlighted their bioavailability and dynamic transformation within archaea. These findings provide vital insights into the nano-bio interface in archaeal systems, contributing to our understanding of archaeal catalysis and its broader applications.
0
Citation1
0
Save
0

Large-scale Proteomic and Phosphoproteomic Analysis of Maize Seedling Leaves During De-etiolation

Zhifang Gao et al.Mar 14, 2020
De-etiolation consists of a series of developmental and physiological changes that a plant undergoes in response to light. During this process light, an important environmental signal, triggers the inhibition of mesocotyl elongation and the production of photosynthetically active chloroplasts, and etiolated leaves transition from the "sink" stage to the "source" stage. De-etiolation has been extensively studied in maize (Zea mays L). However, little is known about how this transition is regulated. In this study, we describe a quantitative proteomic and phosphoproteomic atlas of the de-etiolation process in maize. We identified 16,420 proteins and quantified 14,168. In addition, 8,746 phosphorylation sites within 3,110 proteins were identified. From the proteomic and phosphoproteomic data combined, we identified a total of 17,436 proteins, 27.6% of which are annotated protein coding genes in the Zea_mays AGPv3.28 database. Only 6% of proteins significantly changed in abundance during de-etiolation. In contrast, the phosphorylation levels of more than 25% of phosphoproteins significantly changed; these included proteins involved in gene expression and homeostatic pathways and rate-limiting enzymes involved in photosynthesis light and carbon reactions. Based on phosphoproteomic analysis, 34% (1,057) of all phosphoproteins identified in this study contained more than three phosphorylation sites, and 37 proteins contained more than 16 phosphorylation sites, which shows that multi-phosphorylation is ubiquitous during the de-etiolation process. Our results suggest that plants might preferentially regulate the level of PTMs rather than protein abundance for adapting to changing environments. The study of PTMs could thus better reveal the regulation of de-etiolation.
0

Identifying dynamic, partially occupied residues using anomalous scattering

Serena Rocchio et al.May 20, 2019
X-ray crystallography is generally used to take single snapshots of a protein's conformation. The important but difficult task of characterizing structural ensembles in crystals is typically limited to small conformational changes, such as multiple side-chain conformations. A crystallographic method was recently introduced that utilizes Residual Anomalous and Electron Density (READ) to characterize structural ensembles encompassing large-scale structural changes. Key to this method is an ability to accurately measure anomalous signals and distinguish them from noise or other anomalous scatterers. This report presents an optimized data collection and analysis strategy for partially occupied iodine anomalous signals. Using the long wavelength-optimized beamline I23 at Diamond Light Source, the ability to accurately distinguish the positions of anomalous scatterers with as low as ~12% occupancy is demonstrated. The number and position of these anomalous scatterers are consistent with previous biophysical, kinetic and structural data that suggest the protein Im7 binds to the chaperone Spy in multiple partially occupied conformations. This study shows that a long-wavelength beamline results in easily validated anomalous signals that are strong enough to be used to detect and characterize highly dynamic sections of crystal structures.
0

In-situ construction of biomineralized cadmium sulfide-Rhodopseudomonas palustris hybrid system: Mechanism of synergistic light utilization

Su‐Fang Xing et al.Aug 1, 2024
Sulfide biomineralization is a microorganism-induced process for transforming the environmentally hazardous cadmium into useful resource utilization. This study successfully constructed cadmium sulfide nanoparticles-Rhodopseudomonas palustris (Bio-CdS NPs-R. palustris) hybrids. For the self-assembling hybrids, Bio-CdS NPs were treated as new artificial-antennas to enhance photosynthesis, especially under low light (LL). Bacterial physiological results of hybrids were significantly increased, particularly for cells under LL, with higher enhancement photon harvesting ability. The enhancement included the pigment contents, and the ratio of the peripheral light-harvesting complex Ⅱ (LH2) to light-harvesting Ⅰ (1.33±0.01 under LL), leading to the improvements of light-harvesting, transfer, and antenna conversion efficiencies. Finally, the stimulated electron chain of hybrids improved bacterial metabolism with increased nicotinamide adenine dinucleotide (NADH, 174.5% under LL) and adenosine triphosphate (ATP, 41.1% under LL). Furthermore, the modified photosynthetic units were induced by the up-regulated expression of fixK, which was activated by reduced oxygen tension of the medium for hybrids. fixK up-regulated genes encoding pigments (crt, and bch) and complexes (puf, pucAB, and pucC), leading to improved light-harvesting and transfer, and transform ability. This study provides a comprehensive understanding of the solar energy utilization mechanism of in-situ semiconductor-phototrophic microbe hybrids, contributing to further theoretical insight into their practical application.