Abstract Current theories suggest that altering choices requires value modification. To investigate this, normal-weight participants’ food choices and values were tested before and after an approach-avoidance training (AAT), while neural activity was recorded during the choice task using functional magnetic resonance imaging (fMRI). During AAT, participants consistently approached low-while avoiding high-calorie food cues. AAT facilitated low-calorie food choices, leaving food values unchanged. Instead, we observed a shift in indifference points, indicating the decreased contribution of food values in food choices. Training-induced choice shifts were associated with increased activity in the posterior cingulate cortex (PCC). In contrast, the medial PFC activity was not changed. Additionally, PCC grey matter density predicted individual differences in training-induced functional changes, suggesting anatomic predispositions to training impact. Our findings demonstrate neural mechanisms underlying choice modulation independent of valuation-related processes, with substantial theoretical significance for decision-making frameworks and translational implications for health-related decisions resilient to value shifts.