MD
Mitra Darvish
Author with expertise in RNA Sequencing Data Analysis
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
1
h-index:
3
/
i10-index:
0
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
30

Hierarchical Interleaved Bloom Filter: Enabling ultrafast, approximate sequence queries

Svenja Mehringer et al.Aug 1, 2022
+4
F
E
S
Abstract Searching sequences in large, distributed databases is the most widely used bioinformatics analysis done. This basic task is in dire need for solutions that deal with the exponential growth of sequence repositories and perform approximate queries very fast. In this paper, we present a novel data structure: the Hierarchical Interleaved Bloom Filter (HIBF). It is extremely fast and space efficient, yet so general that it has the potential to serve as the underlying engine for many applications. We show that the HIBF is superior in build time, index size and search time while achieving a comparable or better accuracy compared to other state-of-the art tools (Mantis and Bifrost). The HIBF builds an index up to 211 times faster, using up to 14 times less space and can answer approximate membership queries faster by a factor of up to 129. This can be considered a quantum leap that opens the door to indexing complete sequence archives like the European Nucleotide Archive or even larger metagenomics data sets.
30
Citation1
0
Save
0

Raptor: A fast and space-efficient pre-filter for querying very large collections of nucleotide sequences

Enrico Seiler et al.Oct 8, 2020
+2
M
S
E
Abstract We present Raptor, a tool for approximately searching many queries in large collections of nucleotide sequences. In comparison with similar tools like Mantis and COBS, Raptor is 12-144 times faster and uses up to 30 times less memory. Raptor uses winnowing minimizers to define a set of representative k -mers, an extension of the Interleaved Bloom Filters (IBF) as a set membership data structure, and probabilistic thresholding for minimizers. Our approach allows compression and a partitioning of the IBF to enable the effective use of secondary memory.