Extracellular vesicles (EVs) are known to be involved in intercellular communication during cancer progression; thus, elucidating the detailed mechanism will contribute to the development of a novel strategy for EV-targeted cancer treatment. However, the biogenesis of EVs in cancer cells is not completely understood. MicroRNAs (miRNAs) regulate a variety of physiological and pathological phenomena; thus, miRNAs could regulate EV secretion. Here, we performed high-throughput miRNA-based screening to identify the regulators of EV secretion using an ExoScreen assay. By using this miRNA-based screening, we identified miR-26a, which was reported as a tumor suppressive miRNA, as a miRNA involved in EV secretion from prostate cancer (PCa) cells. In addition, we found that the SHC4, PFDN4, and CHORDC1 genes regulate EV secretion in PCa cells. Suppression of these genes by siRNAs significantly inhibited the secretion of EVs in PCa cells. Furthermore, the progression of PCa cells was inhibited in an in vivo study. On the other hand, injection of EVs isolated from PCa cells partially rescued this suppressive effect on tumor growth. Taken together, our findings suggest that miR-26a regulates EV secretion via targeting SHC4, PFDN4, and CHORDC1 in PCa cells, resulting in the suppression of PCa progression.