XW
Xiaoxue Wang
Author with expertise in Ecology and Evolution of Viruses in Ecosystems
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
5
h-index:
52
/
i10-index:
264
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
27

Dual control of lysogeny and phage defense by a phosphorylation-based toxin/antitoxin system

Yunxue Guo et al.Sep 5, 2022
SUMMARY Regulatory systems that maintain prophage quiescence integrate phage and host gene expression with environmental conditions 1,2 . In the opportunistic bacterial pathogen Pseudomonas aeruginosa , Pf filamentous bacteriophages play critical roles in biofilm formation and virulence 3-5 , but mechanisms governing Pf prophage activation in biofilms are largely unknown. Here, we report a new type of prophage regulatory module in a widely-distributed P. aeruginosa lineage that not only controls virion production of co-resident Pf prophages, but also mediates defense against diverse lytic phages. By comparing two lineages of the prototype P. aeruginosa strain PAO1 that harbor different Pf prophages, we identified a prophage-encoded kinase-kinase-phosphatase (KKP) system that controls Pf production in biofilms. KKP components exhibit dynamic stoichiometry, where high kinase levels in planktonic conditions maintain phosphorylation of the host H-NS protein MvaU, repressing prophage activation. During biofilm formation, phosphatase expression is heightened, leading to MvaU dephosphorylation and alleviating repression of prophage gene expression. KKP clusters are present in hundreds of diverse temperate prophages and other mobile elements across Gram-negative bacteria. Characterization of KKP modules from different species revealed that, in addition to regulating Pf phage lysogeny, KKP functions as a tripartite toxin-antitoxin system that mediates host defense from predatory lytic phages. KKP represents a new phosphorylation-based mechanism for prophage regulation and for phage defense. The dual function of this module raises the question of whether other newly described phage defense systems 6-9 also regulate intrinsic prophage biology in diverse hosts.
27
Citation4
0
Save
0

Transposon-insertion sequencing screens unveil requirements for EHEC growth and intestinal colonization

Alyson Warr et al.Feb 27, 2019
Abstract Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is an important food-borne pathogen that colonizes the colon. Transposon-insertion sequencing (TIS) was used to identify genes required for EHEC and commensal E. coli K-12 growth in vitro and for EHEC growth in vivo in the infant rabbit colon. Surprisingly, many conserved loci contribute to EHEC’s but not to K-12’s growth in vitro, suggesting that gene acquisition during EHEC evolution has heightened the pathogen’s reliance on certain metabolic processes that are dispensable for K-12. There was a restrictive bottleneck for EHEC colonization of the rabbit colon, which complicated identification of EHEC genes facilitating growth in vivo. Both a refined version of an existing analytic framework as well as PCA-based analysis were used to compensate for the effects of the infection bottleneck. These analyses confirmed that the EHEC LEE-encoded type III secretion apparatus is required for growth in vivo and revealed that only a few effectors are critical for in vivo fitness. Numerous mutants not previously associated with EHEC survival/growth in vivo also appeared attenuated in vivo, and a subset of these putative in vivo fitness factors were validated. Some were found to contribute to efficient type-three secretion while others, including tatABC, oxyR, envC, acrAB , and cvpA , promote EHEC resistance to host-derived stresses encountered in vivo. cvpA , which is also required for intestinal growth of several other enteric pathogens, proved to be required for EHEC, Vibrio cholerae and Vibrio parahaemolyticus resistance to the bile salt deoxycholate. Collectively, our findings provide a comprehensive framework for understanding EHEC growth in the intestine. Author Summary Enterohemorrhagic E. coli (EHEC) are important food-borne pathogens that infect the colon. We created a highly saturated EHEC transposon library and used transposon insertion sequencing to identify the genes required for EHEC growth in vitro and in vivo in the infant rabbit colon. We found that there is a large infection bottleneck in the rabbit model of intestinal colonization, and refined two analytic approaches to facilitate rigorous identification of new EHEC genes that promote fitness in vivo. Besides the known type III secretion system, more than 200 additional genes were found to contribute to EHEC survival and/or growth within the intestine. The requirement for some of these new in vivo fitness factors was confirmed, and their contributions to infection were investigated. This set of genes should be of considerable value for future studies elucidating the processes that enable the pathogen to proliferate in vivo and for design of new therapeutics.
0
Citation1
0
Save
0

Genome-wide identification and transcriptomic analysis of microRNAs across various amphioxus organs using deep sequencing

Qilin Zhang et al.Aug 20, 2019
Amphioxus is the closest living invertebrate proxy of the vertebrate ancestor. Systematic gene identification and expression profile analysis of amphioxus organs is thus important for clarifying the molecular mechanisms of organ function formation and further understanding the evolutionary origin of organs and genes in vertebrates. The precise regulation of microRNAs (miRNAs) is crucial for the functional specification and differentiation of organs. In particular, those miRNAs that are expressed specifically in organs (OSMs) play key roles in organ identity, differentiation, and function. In this study, the genome-wide miRNA transcriptome was analyzed in eight organs of adult amphioxus Branchiostoma belcheri using deep sequencing. A total of 167 known miRNAs and 23 novel miRNAs (named novel_mir), including 139 conserved miRNAs, were discovered, and 79 of these were identified as OSMs. Additionally, analyses of the expression patterns of eight randomly selected known miRNAs demonstrated the accuracy of the miRNA deep sequencing that was used in this study. Furthermore, potentially OSM-regulated genes were predicted for each organ type. Functional enrichment of these predicted targets, as well as further functional analyses of known OSMs, was conducted. We found that the OSMs were potentially to be involved in organ specific functions, such as epidermis development, gonad development, muscle cell development, proteolysis, lipid metabolism and generation of neurons. Moreover, OSMs with non-organ specific functions were detected, and primarily include those related to innate immunity and response to stimuli. These findings provide insights into the regulatory roles of OSMs in various amphioxus organs.