SZ
Syed Zaidi
Author with expertise in Mechanisms of Alzheimer's Disease
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
1
h-index:
6
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

Novel Master Regulators of Microglial Phagocytosis and Repurposed FDA-approved Drug for Treatment of Alzheimer Disease

Kuixi Zhu et al.Oct 21, 2022
+18
P
D
K
Summary Microglia, the innate immune cells of the brain, are essential determinants of late-onset Alzheimer’s Disease (LOAD) neuropathology. Here, we developed an integrative computational systems biology approach to construct causal network models of genetic regulatory programs for microglia in Alzheimer’s Disease (AD). This model enabled us to identify novel key driver (KDs) genes for microglial functions that can be targeted for AD pharmacotherapy. We prioritized FCER1G, HCK, LAPTM5, ITGB2, SLC1A2, PAPLN, GSAP, NTRK2 , and CIRBP as KDs of microglial phagocytosis promoting neuroprotection and/or neural repair. In vitro , shRNA knockdown of each KD significantly reduced microglial phagocytosis. We repurposed riluzole, an FDA-approved ALS drug that upregulates SLC1A2 activity, and discovered that it stimulated phagocytosis of Aβ1-42 in human primary microglia and decreased hippocampal amyloid plaque burden/phosphorylated tau levels in the brain of aged 3xTg-AD mice. Taken together, these data emphasize the utlility of our integrative approach for repurposing drugs for AD therapy.
2
Citation1
0
Save
3

Predictive Network Analysis IdentifiesJMJD6and Other Novel Key Drivers in Alzheimer’s Disease

Julie Merchant et al.Oct 22, 2022
+9
M
K
J
Summary Despite decades of genetic studies on late onset Alzheimer’s disease (LOAD), the molecular mechanisms of Alzheimer’s disease (AD) remain unclear. Furthermore, different cell types in the central nervous system (CNS) play distinct roles in the onset and progression of AD pathology. To better comprehend the complex etiology of AD, we used an integrative approach to build robust predictive (causal) network models which were cross-validated over multiple large human multi-omics datasets in AD. We employed a published method to delineate bulk-tissue gene expression into single cell-type gene expression and integrated clinical and pathologic traits of AD, single nucleotide variation, and deconvoluted gene expression for the construction of predictive network models for each cell type in AD. With these predictive causal models, we are able to identify and prioritize robust key drivers of the AD-associated network state. In this study, we focused on neuron-specific network models and prioritized 19 predicted key drivers modulating AD pathology. These targets were validated via shRNA knockdown in human induced pluripotent stem cell (iPSC) derived neurons (iNs), in which 10 out of the 19 neuron-related targets ( JMJD6, NSF, NUDT2, YWHAZ, RBM4, DCAF12, NDRG4, STXBP1, ATP1B1 , and FIBP ) significantly modulated levels of amyloid-beta and/or phosphorylated tau peptides in the postmitotic iNs. Most notably, knockdown of JMJD6 significantly altered the neurotoxic ratios of Aβ42 to 40 and p231-tau to total tau, indicating its potential therapeutic relevance to both amyloid and tau pathology in AD. Molecular validation by RNA sequencing (RNAseq) in iNs further confirmed the network structure, showing significant enrichment in differentially expressed genes after knockdown of the validated targets. Interestingly, our network model predicts that these 10 key drivers are upstream regulators of REST and VGF, two recently identified key regulators of AD pathogenesis.