YH
Yu-Fu Hung
Author with expertise in Malaria
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
295
h-index:
6
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Glycans on influenza hemagglutinin affect receptor binding and immune response

Cheng‐Chi Wang et al.Oct 13, 2009
Recent cases of avian influenza H5N1 and the swine-origin 2009 H1N1 have caused a great concern that a global disaster like the 1918 influenza pandemic may occur again. Viral transmission begins with a critical interaction between hemagglutinin (HA) glycoprotein, which is on the viral coat of influenza, and sialic acid (SA) containing glycans, which are on the host cell surface. To elucidate the role of HA glycosylation in this important interaction, various defined HA glycoforms were prepared, and their binding affinity and specificity were studied by using a synthetic SA microarray. Truncation of the N-glycan structures on HA increased SA binding affinities while decreasing specificity toward disparate SA ligands. The contribution of each monosaccharide and sulfate group within SA ligand structures to HA binding energy was quantitatively dissected. It was found that the sulfate group adds nearly 100-fold (2.04 kcal/mol) in binding energy to fully glycosylated HA, and so does the biantennary glycan to the monoglycosylated HA glycoform. Antibodies raised against HA protein bearing only a single N-linked GlcNAc at each glycosylation site showed better binding affinity and neutralization activity against influenza subtypes than the fully glycosylated HAs elicited. Thus, removal of structurally nonessential glycans on viral surface glycoproteins may be a very effective and general approach for vaccine design against influenza and other human viruses.
7

Characterization of Plasmodium falciparum myosin B in complex with the calmodulin-like domain of its light chain MLC-B

Isa Pires et al.May 28, 2022
Abstract Myosin B (MyoB) is a class 14 myosin expressed in all invasive stages of the malaria parasite, Plasmodium falciparum . It is not associated with the glideosome complex that drives motility and invasion of host cells. During red blood cell invasion, it remains at the apical tip of the merozoite but is no longer observed once invasion is completed. MyoB is not essential for parasite survival but, when it is knocked out, merozoites are delayed in the initial stages of red blood cell invasion, giving rise to a growth defect that correlates with reduced invasion success. Here, we have expressed and purified functional MyoB with the help of parasite-specific chaperones Hsp90 and Unc45, characterized its binding to actin and its known light chain MLC-B using biochemical and biophysical methods, and determined its low-resolution structure in solution using small-angle X-ray scattering. In addition to MLC-B, four other putative regulatory light chains were found to bind to the MyoB IQ2 motif in vitro . The purified recombinant MyoB adopted the overall shape of a myosin, exhibited actin-activated ATPase activity, and moved actin filaments in vitro . The ADP release rate was faster than the ATP turnover number, and thus, does not appear to be rate-limiting. This, together with the observed high affinity to actin and the specific localization of MyoB, may point towards a role in tethering and/or force sensing during early stages of invasion.