MZ
Mang Zhu
Author with expertise in Molecular Chaperones in Protein Folding and Disease
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
1
h-index:
6
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
24

Shift of the insoluble content of the proteome in aging mouse brain

Cristen Molzahn et al.Dec 14, 2022
+12
I
E
C
Abstract Aging and protein aggregation diseases are inextricably linked. During aging, cellular response to unfolded proteins are believed to decline which results in diminished protein homeostasis (proteostasis). Indeed, in model organisms, such as C. elegans , proteostatic decline with age has even been linked to the onset of aggregation of proteins in wild-type animals. However, this correlation has not been extensively characterized in aging mammals. To reveal the insoluble portion of the proteome, we analyzed the detergent-insoluble fraction of mouse brain tissues after high-speed centrifugation by quantitative mass spectrometry. We identified a cohort of 171 proteins enriched in the pellet fraction of older mice including the alpha crystallin small heat shock protein. We then performed a meta-analysis to compare features among distinct groups of detergent-insoluble proteins reported in the literature. Surprisingly, our analysis revealed that features associated with proteins found in the pellet fraction differ depending on the ages of the mice. In general, insoluble proteins from young models (<15 weeks) were more likely to be RNA-binding, more disordered and more likely to be found in membraneless organelles. These traits become less prominent with age within the combined dataset, as proteins with more structure enter the pellet fraction. This analysis suggests that age-related changes to proteome organization lead a specific group of proteins to enter the pellet fraction as a result of loss of proteostasis.
24
Citation1
0
Save
0

Proteomic analysis reveals the recruitment of intrinsically disordered regions to stress granules

Mang Zhu et al.Sep 5, 2019
+7
J
E
M
Heat-stress triggers the formation of condensates known as stress granules (SGs), which store non-translating mRNA and stalled translation initiation complexes. To gain a better understanding of SGs, we identified yeast proteins that sediment after heat-shock by mass spectrometry. Heat-regulated proteins are biased toward a subset of abundant proteins that are significantly enriched in intrinsically disordered regions (IDRs). SG localization of over 80 heat-regulated proteins was confirmed using microscopy, including 32 proteins that were not known previously to localize to SGs. We find that several IDRs are sufficient to mediate SG recruitment. Moreover, the diffusive exchange of IDRs within SGs, observed via FRAP, can be highly dynamic while other components remain immobile. Lastly, we showed that the IDR of the Ubp3 deubiquitinase is critical for SG formation. This work confirms that IDRs play an important role in cellular compartmentalization upon stress, can be sufficient for SG incorporation, can remain dynamic in vitrified SGs, and play a vital role during heat-stress.
1

Pulse labeling reveals the tail end of protein folding by proteome profiling

Mang Zhu et al.Mar 29, 2021
+2
N
E
M
Summary Accurate and efficient folding of nascent protein sequences into their native state requires support from the protein homeostasis network. Herein we probed which newly translated proteins are less thermostable to infer which polypeptides require more time to fold within the proteome. Specifically, we determined which of these proteins were more susceptible to misfolding and aggregation under heat stress using pulse SILAC coupled mass spectrometry. These proteins are abundant, short, and highly structured. Notably these proteins display a tendency to form β-sheet structures, a configuration which typically requires more time for folding, and were enriched for Hsp70/Ssb and TRiC/CCT binding motifs, suggesting a higher demand for chaperone-assisted folding. These polypeptides were also more often components of stable protein complexes in comparison to other proteins. All evidence combined suggests that a specific subset of newly translated proteins requires more time following synthesis to reach a thermostable native state in the cell.