AR
Anisha Ramadhin
Author with expertise in Molecular Mechanisms of DNA Damage Response
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
2
h-index:
2
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

STK19 drives Transcription-Coupled Repair by stimulating repair complex stability, Pol II ubiquitylation and TFIIH recruitment

Anisha Ramadhin et al.Jul 22, 2024
Abstract DNA damage forms a major obstacle for gene transcription by RNA polymerase II (Pol II). Transcription-coupled nucleotide excision repair (TC-NER) efficiently eliminates transcription-blocking lesions (TBLs), thereby safeguarding accurate transcription, preserving correct cellular function and counteracting aging. TC-NER initiation involves the recognition of lesion-stalled Pol II by CSB, which recruits the CRL4 CSA E3 ubiquitin ligase complex and UVSSA. TBL-induced ubiquitylation of Pol II at lysine 1268 of the RPB1 subunit by CRL4 CSA serves as a critical TC-NER checkpoint, governing Pol II stability and initiating TBL excision by TFIIH recruitment. However, the precise regulatory mechanisms of the CRL4 CSA E3 ligase activity and TFIIH recruitment remain elusive. Here, we reveal Inactive Serine/Threonine Kinase 19 (STK19) as a novel TC-NER factor, that is essential for correct TBL removal repair and subsequent transcription restart. Cryo-EM studies demonstrate that STK19 is an integral part of the Pol II-TC-NER complex, bridging CSA with UVSSA, RPB1 and downstream DNA. Live-cell imaging and interaction studies show that STK19 stimulates TC-NER complex stability and CRL4 CSA activity, resulting in efficient Pol II ubiquitylation and correct UVSSA and TFIIH binding. These findings underscore the crucial role of STK19 as a core component of the TC-NER machinery and its key involvement in the cellular responses to DNA damage that interfere with transcription.
0
Citation1
0
Save
4

CRISPR screens in sister chromatid cohesion defective cells reveal PAXIP1-PAGR1 as regulator of chromatin association of cohesin

Janne Schie et al.Dec 23, 2022
ABSTRACT The cohesin complex regulates higher order chromosome architecture through maintaining sister chromatid cohesion and folding chromatin by active DNA loop extrusion. Impaired cohesin function underlies a heterogeneous group of genetic syndromes and is associated with cancer. Here, by using synthetic lethality CRISPR screens in isogenic human cell lines defective of specific cohesion regulators, we mapped the genetic dependencies induced by absence of DDX11 or ESCO2. The obtained high confidence synthetic lethality networks are strongly enriched for genes involved in DNA replication and mitosis and support the existence of parallel sister chromatid cohesion establishment pathways. Among the hits, we identified the chromatin binding, BRCT-domain containing protein PAXIP1 as a novel cohesin regulator. Depletion of PAXIP1 severely aggravated cohesion defects in ESCO2 defective cells, leading to mitotic cell death. PAXIP1 promoted the global chromatin association of cohesin, independent of DNA replication, a function that could not be explained by indirect effects of PAXIP1 on transcription or the DNA damage response. Cohesin regulation by PAXIP1 required its binding partner PAGR1 and a conserved FDF motif in PAGR1. Similar motifs were previously found in multiple cohesin regulators, including CTCF, to mediate physical interactions with cohesin. PAXIP1 co-localizes with cohesin on multiple genomic loci, including at active gene promoters and enhancers. Together, this study identifies the PAXIP1-PAGR1 complex as a novel regulator of cohesin occupancy on chromatin. Possibly, this role in cohesin regulation is also relevant for previously described functions of PAXIP1 in transcription, immune cell maturation and DNA repair.
4
Citation1
0
Save