SD
Selina Dwight
Author with expertise in Analysis of Gene Interaction Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
45,719
h-index:
22
/
i10-index:
26
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Saccharomyces genome database

Laurie Issel‐Tarver et al.Jan 1, 2002
The goal of the Saccharomyces Genome Database (SGD) is to provide information about the genome of this yeast, the genes it encodes, and their biological functions. The genome sequence of S. cerevisiae provides the structure around which information in SGD is organized; value is added to the sequence by careful biological annotation drawn from a number of sources. SGD curates and stores information about budding yeast DNA and protein sequences, genetics, cell biology, and the associated community of researchers. SGD also provides search and analysis tools designed to help researchers mine the data for pieces or patterns of biological information relevant to their interests. A continuing challenge for the staff of SGD is to present up-to-date information about yeast genes in a format that is intuitive and useful to biomedical researchers, while responding to the needs of this community by providing resources and tools for exploring the data in new ways. This chapter describes the organization of SGD, the sources of the data stored in SGD, some methods for retrieving information from the database, connections SGD has with outside databases and non-yeast research communities, and SGD's repository of yeast community information.
0
Citation690
0
Save
1

Evaluating the Clinical Validity of Gene-Disease Associations: An Evidence-Based Framework Developed by the Clinical Genome Resource

Natasha Strande et al.May 25, 2017
With advances in genomic sequencing technology, the number of reported gene-disease relationships has rapidly expanded. However, the evidence supporting these claims varies widely, confounding accurate evaluation of genomic variation in a clinical setting. Despite the critical need to differentiate clinically valid relationships from less well-substantiated relationships, standard guidelines for such evaluation do not currently exist. The NIH-funded Clinical Genome Resource (ClinGen) has developed a framework to define and evaluate the clinical validity of gene-disease pairs across a variety of Mendelian disorders. In this manuscript we describe a proposed framework to evaluate relevant genetic and experimental evidence supporting or contradicting a gene-disease relationship and the subsequent validation of this framework using a set of representative gene-disease pairs. The framework provides a semiquantitative measurement for the strength of evidence of a gene-disease relationship that correlates to a qualitative classification: "Definitive," "Strong," "Moderate," "Limited," "No Reported Evidence," or "Conflicting Evidence." Within the ClinGen structure, classifications derived with this framework are reviewed and confirmed or adjusted based on clinical expertise of appropriate disease experts. Detailed guidance for utilizing this framework and access to the curation interface is available on our website. This evidence-based, systematic method to assess the strength of gene-disease relationships will facilitate more knowledgeable utilization of genomic variants in clinical and research settings.
1
Citation447
0
Save
0

Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO)

Selina Dwight et al.Jan 1, 2002
The Saccharomyces Genome Database (SGD) resources, ranging from genetic and physical maps to genome-wide analysis tools, reflect the scientific progress in identifying genes and their functions over the last decade. As emphasis shifts from identification of the genes to identification of the role of their gene products in the cell, SGD seeks to provide its users with annotations that will allow relationships to be made between gene products, both within Saccharomyces cerevisiae and across species. To this end, SGD is annotating genes to the Gene Ontology (GO), a structured representation of biological knowledge that can be shared across species. The GO consists of three separate ontologies describing molecular function, biological process and cellular component. The goal is to use published information to associate each characterized S.cerevisiae gene product with one or more GO terms from each of the three ontologies. To be useful, this must be done in a manner that allows accurate associations based on experimental evidence, modifications to GO when necessary, and careful documentation of the annotations through evidence codes for given citations. Reaching this goal is an ongoing process at SGD. For information on the current progress of GO annotations at SGD and other participating databases, as well as a description of each of the three ontologies, please visit the GO Consortium page at http://www.geneontology.org. SGD gene associations to GO can be found by visiting our site at http://genome-www.stanford.edu/Saccharomyces/.
0
Citation373
0
Save
0

Evaluating the clinical validity of gene-disease associations: an evidence-based framework developed by the Clinical Genome Resource

Natasha Strande et al.Feb 22, 2017
With advances in genomic sequencing technology, the number of reported gene-disease relationships has rapidly expanded. However, the evidence supporting these claims varies widely, confounding accurate evaluation of genomic variation in a clinical setting. Despite the critical need to differentiate clinically valid relationships from less well-substantiated relationships, standard guidelines for such evaluation do not currently exist. The NIH-funded Clinical Genome Resource (ClinGen) has developed a framework to define and evaluate the clinical validity of gene-disease pairs across a variety of Mendelian disorders. In this manuscript we describe a proposed framework to evaluate relevant genetic and experimental evidence supporting or contradicting a gene-disease relationship, and the subsequent validation of this framework using a set of representative gene-disease pairs. The framework provides a semi-quantitative measurement for the strength of evidence of a gene-disease relationship which correlates to a qualitative classification: “Definitive”, “Strong”, “Moderate”, “Limited”, “No Reported Evidence” or “Conflicting Evidence.” Within the ClinGen structure, classifications derived using this framework are reviewed and confirmed or adjusted based on clinical expertise of appropriate disease experts. Detailed guidance for utilizing this framework and access to the curation interface is available on our website. This evidence-based, systematic method to assess the strength of gene-disease relationships will facilitate more knowledgeable utilization of genomic variants in clinical and research settings.