JO
James Ousey
Author with expertise in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
451
h-index:
7
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

CRISPR-Cas9 Screens In Human Cells And Primary Neurons Identify Modifiers Of C9orf72 Dipeptide Repeat Protein Toxicity

Michael Haney et al.Apr 21, 2017
Hexanucleotide repeat expansions in the C9orf72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9FTD/ALS). The nucleotide repeat expansions are translated into dipeptide repeat (DPR) proteins, which are aggregation-prone and may contribute to neurodegeneration. Studies in model organisms, including yeast and flies have converged upon nucleocytoplasmic transport as one underlying pathogenic mechanism, but a comprehensive understanding of the molecular and cellular underpinnings of DPR toxicity in human cells is still lacking. We used the bacteria-derived clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to perform genome-wide gene knockout screens for suppressors and enhancers of C9orf72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. Our screens revealed genes involved in nucleocytoplasmic transport, reinforcing the previous findings from model systems. We also uncovered new potent modifiers of DPR toxicity whose gene products function in the endoplasmic reticulum (ER), proteasome, RNA processing pathways, and in chromatin modification. Since regulators of ER stress emerged prominently from the screens, we further investigated one such modifier, TMX2, which we identified as a modulator of the ER-stress signature elicited by C9orf72 DPRs in neurons. Together, this work identifies novel suppressors of DPR toxicity that represent potential therapeutic targets and demonstrates the promise of CRISPR-Cas9 screens to define mechanisms of neurodegenerative diseases.
3

Integrated multi-cohort analysis of the Parkinson’s disease gut metagenome

Joseph Boktor et al.Jul 21, 2022
ABSTRACT Background The gut microbiome is altered in several neurologic disorders including Parkinson’s disease (PD). Objectives Profile the fecal gut metagenome in PD for alterations in microbial composition, taxon abundance, metabolic pathways, and microbial gene products, and their relationship with disease progression. Methods Shotgun metagenomic sequencing was conducted on 244 stool donors from two independent cohorts in the United States, including individuals with PD (n=48, n=47, respectively), environmental Household Controls (HC, n=29, n=30), and community Population Controls (PC, n=41, n=49). Microbial features consistently altered in PD compared to HC and PC subjects were identified. Data were cross-referenced to public metagenomic datasets from two previous studies in Germany and China to determine generalizable microbiome features. Results The gut microbiome in PD shows significant alterations in community composition. Robust taxonomic alterations include depletion of putative “beneficial” gut commensals Faecalibacterium prausnitzii and Eubacterium and Roseburia species, and increased abundance of Akkermansia muciniphila and Bifidobacterium species. Pathway enrichment analysis and metabolic potential, constructed from microbial gene abundance, revealed disruptions in microbial carbohydrate and lipid metabolism and increased amino acid and nucleotide metabolism. These global gene-level signatures indicate an increased response to oxidative stress, decreased cellular growth and microbial motility, and disrupted inter-community signaling. Conclusions A metagenomic meta-analysis of PD shows consistent and novel alterations in taxonomic representation, functional metabolic potential, and microbial gene abundance across four independent studies from three continents. These data reveal stereotypic changes in the gut microbiome are a consistent feature of PD, highlighting potential diagnostic and therapeutic avenues for future research.