OT
Olga Tanaseichuk
Author with expertise in Malaria
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
10,688
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Metascape provides a biologist-oriented resource for the analysis of systems-level datasets

Yingyao Zhou et al.Apr 3, 2019
A critical component in the interpretation of systems-level studies is the inference of enriched biological pathways and protein complexes contained within OMICs datasets. Successful analysis requires the integration of a broad set of current biological databases and the application of a robust analytical pipeline to produce readily interpretable results. Metascape is a web-based portal designed to provide a comprehensive gene list annotation and analysis resource for experimental biologists. In terms of design features, Metascape combines functional enrichment, interactome analysis, gene annotation, and membership search to leverage over 40 independent knowledgebases within one integrated portal. Additionally, it facilitates comparative analyses of datasets across multiple independent and orthogonal experiments. Metascape provides a significantly simplified user experience through a one-click Express Analysis interface to generate interpretable outputs. Taken together, Metascape is an effective and efficient tool for experimental biologists to comprehensively analyze and interpret OMICs-based studies in the big data era. With the increasing obtainability of multi-OMICs data comes the need for easy to use data analysis tools. Here, the authors introduce Metascape, a biologist-oriented portal that provides a gene list annotation, enrichment and interactome resource and enables integrated analysis of multi-OMICs datasets.
0

Mapping The Malaria Parasite Drug-Able Genome Using In Vitro Evolution And Chemogenomics

Annie Cowell et al.May 22, 2017
Chemogenetic characterization through in vitro evolution combined with whole genome analysis is a powerful tool to discover novel antimalarial drug targets and identify drug resistance genes. Our comprehensive genome analysis of 262 Plasmodium falciparum parasites treated with 37 diverse compounds reveals how the parasite evolves to evade the action of small molecule growth inhibitors. This detailed data set revealed 159 gene amplifications and 148 nonsynonymous changes in 83 genes which developed during resistance acquisition. Using a new algorithm, we show that gene amplifications contribute to 1/3 of drug resistance acquisition events. In addition to confirming known multidrug resistance mechanisms, we discovered novel multidrug resistance genes. Furthermore, we identified promising new drug target-inhibitor pairs to advance the malaria elimination campaign, including: thymidylate synthase and a benzoquinazolinone, farnesyltransferase and a pyrimidinedione, and a dipeptidylpeptidase and an arylurea. This deep exploration of the P. falciparum resistome and drug-able genome will guide future drug discovery and structural biology efforts, while also advancing our understanding of resistance mechanisms of the deadliest malaria parasite.