TC
T. Coffelt
Author with expertise in Natural Products as Sources of New Drugs
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
2
(0% Open Access)
Cited by:
544
h-index:
24
/
i10-index:
47
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Field-based phenomics for plant genetics research

Jeffrey White et al.May 2, 2012
A major challenge for crop research in the 21st century is how to predict crop performance as a function of genetic architecture. Advances in “next generation” DNA sequencing have greatly improved genotyping efficiency and reduced genotyping costs. Methods for characterizing plant traits (phenotypes), however, have much progressed more slowly over the past 30 years, and constraints in phenotyping capability limit our ability to dissect the genetics of quantitative traits, especially those related to harvestable yield and stress tolerance. As a case in point, mapping populations for major crops may consist of 20 or more families, each represented by as many as 200 lines, necessitating field trials with over 20,000 plots at a single location. Investing in the resources and labor needed to quantify even a few agronomic traits for linkage with genetic markers in such massive populations is currently impractical for most breeding programs. Herein, we define key criteria, experimental approaches, equipment and data analysis tools required for robust, high-throughput field-based phenotyping (FBP). The focus is on simultaneous proximal sensing for spectral reflectance, canopy temperature, and plant architecture where a vehicle carrying replicated sets of sensors records data on multiple plots, with the potential to record data throughout the crop life cycle. The potential to assess traits, such as adaptations to water deficits or acute heat stress, several times during a single diurnal cycle is especially valuable for quantifying stress recovery. Simulation modeling and related tools can help estimate physiological traits such as canopy conductance and rooting capacity. Many of the underlying techniques and requisite instruments are available and in use for precision crop management. Further innovations are required to better integrate the functions of multiple instruments and to ensure efficient, robust analysis of the large volumes of data that are anticipated. A complement to the core proximal sensing is high-throughput phenotyping of specific traits such as nutrient status, seed composition, and other biochemical characteristics, as well as underground root architecture. The ability to “ground truth” results with conventional measurements is also necessary. The development of new sensors and imaging systems undoubtedly will continue to improve our ability to phenotype very large experiments or breeding nurseries, with the core FBP abilities achievable through strong interdisciplinary efforts that assemble and adapt existing technologies in novel ways.
0
Citation544
0
Save
0

A Century of Guayule: Comprehensive Genetic Characterization of the Guayule (Parthenium argentatum A. Gray) USDA Germplasm Collection

Daniel Ilut et al.Jun 7, 2017
The fragility of a single-source, geographically concentrated supply of natural rubber, a critical material of the modern economy, has brought guayule (Parthenium argentatum A. Gray) to the forefront as an alternative source of natural rubber. The improvement of guayule for commercial-scale production has been limited by the lack of genomic tools and well-characterized genetic resources required for genomics-assisted breeding. To address this issue, we developed nearly 50,000 single nucleotide polymorphism (SNP) genetic markers and genotyped 69 accessions of guayule and its sister taxa mariola (Parthenium incanum Kunth), representing the entire available NALPGRU germplasm collection. We identified multiple interspecific hybrid accessions previously considered guayule, including six guayule-mariola hybrids and non-mariola interspecific hybrid accessions AZ-2 and AZ-3, two commonly used high-yielding cultivars. We dissected genetic diversity within the collection to identify a highly diverse subset of guayule accessions, and showed that wild guayule stands in Big Bend National Park, Texas, USA have the potential to provide hitherto untapped guayule genetic diversity. Together, these results provide the most thorough genetic characterization of guayule germplasm to date and lay the foundation for rapid genetic improvement of commercial guayule germplasm.