CP
Carolin Purmann
Author with expertise in Genomic Rearrangements and Copy Number Variations
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
2,314
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Six new loci associated with body mass index highlight a neuronal influence on body weight regulation

Cristen Willer et al.Dec 14, 2008
+97
R
E
C
Joel Hirschhorn and colleagues report results of a large-scale genome-wide association and replication study for obesity-related traits. The newly discovered loci are enriched for genes expressed in the central nervous system, and may thus contribute to weight gain by modulating food intake. Similar results are reported in a related study by Gudmar Thorleifsson and colleagues. Common variants at only two loci, FTO and MC4R, have been reproducibly associated with body mass index (BMI) in humans. To identify additional loci, we conducted meta-analysis of 15 genome-wide association studies for BMI (n > 32,000) and followed up top signals in 14 additional cohorts (n > 59,000). We strongly confirm FTO and MC4R and identify six additional loci (P < 5 × 10−8): TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGR1 (where a 45-kb deletion polymorphism is a candidate causal variant). Several of the likely causal genes are highly expressed or known to act in the central nervous system (CNS), emphasizing, as in rare monogenic forms of obesity, the role of the CNS in predisposition to obesity.
0
Citation1,684
0
Save
0

Large, rare chromosomal deletions associated with severe early-onset obesity

Elena Bochukova et al.Dec 6, 2009
+9
J
N
E
Obesity is a highly heritable disorder but the genetic associations reported to date account for only a small percentage of the inherited variation in body mass index. Two groups report deletions on chromosome16p11.2 that may explain part of the 'missing heritability' in terms of 'high-penetrance' mutations that are rare but when present are very often associated with severe obesity. This is in contrast to more common gene defects that are less closely associated with clinical symptoms. Bochukova et al. identified rare recurrent copy number variants in 300 patients with severe early-onset obesity, caused by deletions involving several genes including SH2B1, known to be involved in leptin and insulin signalling. Many of the patients also suffered neurodevelopmental disorders. Walters et al. identified deletions of at least 593 kilobases on chromosome 16p11.2 in 31 patients with a previously unrecognized type of extreme obesity. The strategy they used to identify the lesion — using small well-phenotyped cohorts of extreme phenotypes with targeted follow-up in genome-wide association studies and population cohorts — shows promise as a means of identifying 'missing heritability' in complex metabolic diseases more generally. The contribution of copy number variation to obesity — a highly heritable and genetically heterogeneous disorder — is investigated in 300 Caucasian patients to reveal that large, rare deletions are significantly enriched in patients compared to controls. Several rare copy number variants are identified that are recurrent in patients but absent or at much lower prevalence in controls. Obesity is a highly heritable and genetically heterogeneous disorder1. Here we investigated the contribution of copy number variation to obesity in 300 Caucasian patients with severe early-onset obesity, 143 of whom also had developmental delay. Large (>500 kilobases), rare (<1%) deletions were significantly enriched in patients compared to 7,366 controls (P < 0.001). We identified several rare copy number variants that were recurrent in patients but absent or at much lower prevalence in controls. We identified five patients with overlapping deletions on chromosome 16p11.2 that were found in 2 out of 7,366 controls (P < 5 × 10-5). In three patients the deletion co-segregated with severe obesity. Two patients harboured a larger de novo 16p11.2 deletion, extending through a 593-kilobase region previously associated with autism2,3,4 and mental retardation5; both of these patients had mild developmental delay in addition to severe obesity. In an independent sample of 1,062 patients with severe obesity alone, the smaller 16p11.2 deletion was found in an additional two patients. All 16p11.2 deletions encompass several genes but include SH2B1, which is known to be involved in leptin and insulin signalling6. Deletion carriers exhibited hyperphagia and severe insulin resistance disproportionate for the degree of obesity. We show that copy number variation contributes significantly to the genetic architecture of human obesity.
0
Citation548
0
Save
109

Hyperexcitable arousal circuits drive sleep instability during aging

Shi‐Bin Li et al.Feb 25, 2022
+11
C
V
S
Sleep quality declines with age; however, the underlying mechanisms remain elusive. We found that hyperexcitable hypocretin/orexin (Hcrt/OX) neurons drive sleep fragmentation during aging. In aged mice, Hcrt neurons exhibited more frequent neuronal activity epochs driving wake bouts, and optogenetic activation of Hcrt neurons elicited more prolonged wakefulness. Aged Hcrt neurons showed hyperexcitability with lower KCNQ2 expression and impaired M-current, mediated by KCNQ2/3 channels. Single-nucleus RNA-sequencing revealed adaptive changes to Hcrt neuron loss in the aging brain. Disruption of Kcnq2/3 genes in Hcrt neurons of young mice destabilized sleep, mimicking aging-associated sleep fragmentation, whereas the KCNQ-selective activator flupirtine hyperpolarized Hcrt neurons and rejuvenated sleep architecture in aged mice. Our findings demonstrate a mechanism underlying sleep instability during aging and a strategy to improve sleep continuity.
0

Network effects of the neuropsychiatric 15q13.3 microdeletion on the transcriptome and epigenome in human induced neurons

Siming Zhang et al.Sep 19, 2019
+7
S
X
S
Heterozygous deletions in the 15q13.3 region are associated with several neuropsychiatric disorders including autism, schizophrenia, and attention deficit hyperactivity disorder. Several genes within the 15q13.3 deletion region may play a role in neuronal dysfunction, based on association studies in humans and functional studies in mice, but the intermediate molecular mechanisms remain unknown. We analyzed the genome-wide effects of the 15q13.3 microdeletion on the transcriptome and epigenome. Induced pluripotent stem cell (iPSC) lines from three patients with the typical heterozygous 15q13.3 microdeletion and three sex-matched controls were generated and converted into induced neurons (iNs) using the neurogenin-2 induction method. We analyzed genome-wide gene expression using RNA-Seq, genome-wide DNA methylation using SeqCap-Epi, and genome-wide chromatin accessibility using ATAC-Seq, in both iPSCs and iNs. In both cell types, gene copy number change within the 15q13.3 microdeletion was accompanied by significantly decreased gene expression and no compensatory changes in DNA methylation or chromatin accessibility, supporting the model that haploinsufficiency of genes within the deleted region drives the disorder. Further, we observed global effects of the deletion on the transcriptome and epigenome, with the effects being cell type specific and occurring at discrete loci. Several genes and pathways associated with neuropsychiatric disorders and neuronal development were significantly altered, including Wnt signaling, ribosome biogenesis, DNA binding, and clustered protocadherins. This molecular systems analysis of a large neuropsychiatric microdeletion can also be applied to other brain relevant chromosomal aberrations to further our etiological understanding of neuropsychiatric disorders.
0

Local and global chromatin interactions are altered by large genomic deletions associated with human brain development

Xianglong Zhang et al.Aug 31, 2017
+6
X
Y
X
Background: Large copy number variants (CNVs) in the human genome are strongly associated with common neurodevelopmental, neuropsychiatric disorders such as schizophrenia and autism. Using Hi-C analysis of long-range chromosome interactions, including haplotype-specific Hi-C analysis, and ChIP-Seq analysis of regulatory histone marks, we studied the epigenomic effects of the prominent heterozygous large deletion CNV on chromosome 22q11.2 and also replicated a subset of the findings for the heterozygous large deletion CNV on chromosome 1q21.1. Results: There are local and global gene expression changes as well as pronounced and multilayered effects on chromatin states, chromosome folding and topological domains of the chromatin, that emanate from the large CNV locus. Regulatory histone marks are altered in the deletion flanking regions, and in opposing directions for activating and repressing marks. Histone marks are changed along chromosome 22q and genome wide. Chromosome interaction patterns are weakened within the deletion boundaries and strengthened between the deletion flanking regions. The long-range folding contacts between the telomeric end of chromosome 22q and the distal deletion-flanking region are increased. On the chromosome 22q with deletion the topological domain spanning the CNV boundaries is deleted in its entirety while neighboring domains interact more intensely with each other. Finally, there is a widespread and complex effect on chromosome interactions genome-wide, i.e. involving all other autosomes, with some of the effect directly tied to the deletion region on 22q11.2. Conclusions: These findings suggest novel principles of how such large genomic deletions can alter nuclear organization and affect genomic molecular activity.
1

Direct induction of human neurons from fibroblasts carrying the neuropsychiatric 22q11.2 microdeletion reveals transcriptome- and epigenome-wide alterations

Carolin Purmann et al.Oct 14, 2021
+16
T
S
C
Abstract Standard methods for the creation of neuronal cells via direct induction from primary tissue use perinatal fibroblasts, which hinders the important study of patient specific genetic lesions such as those underlying neuropsychiatric disorders. To address this we developed a novel method for the direct induction of neuronal cells (induced neuronal cells, iN cells) from adult human fibroblast cells. Reprogramming fibroblasts into iN cells via recombinant virus resulted in cells that stain for markers such as MAP2 and PSA-NCAM and exhibit electrophysiological properties such as action potentials and voltage dependent sodium- and potassium currents that reveal a neuronal phenotype. Transcriptome and chromatin analysis using RNA-Seq, microRNA-Seq and ATAC-Seq, respectively, further confirm neuronal character. 22q11.2 Deletion-Syndrome (22q11DS) is caused by a large 3 million base-pair heterozygous deletion on human chromosome 22 and is strongly associated with neurodevelopmental, neuropsychiatric phenotypes such as schizophrenia and autism. We leverage the direct-iN cell model for the study of genetic neurodevelopmental conditions by presenting gene-by-gene as well as networkwide effects of the 22q11DS deletion on gene expression in human neuronal cells, on several levels of functional genomics analysis. Some of the genes within the 22q11DS deletion boundary exhibit unexpected cell-type-specific changes in transcript levels, and genome-wide we can detect dysregulation of calcium channel subunit genes and other genes known to be involved in autism or schizophrenia, such as NRXN1, as well synaptic pathways. This genome-wide effect on gene expression can also be observed at the microRNA and chromatin levels, showing that the iN cells have indeed converted to a neuronal phenotype at several regulatory levels: chromatin, protein-coding RNAs and microRNAs, revealing relevant disease pathways and genes. We present this model of inducing neurons from fibroblasts as a useful general resource to study the genetic and molecular basis of normal and abnormal brain development and brain function.