JS
Jil Sander
Author with expertise in Macrophage Activation and Polarization
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
2,701
h-index:
13
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Transcriptome-Based Network Analysis Reveals a Spectrum Model of Human Macrophage Activation

Jia Xue et al.Feb 1, 2014
Macrophage activation is associated with profound transcriptional reprogramming. Although much progress has been made in the understanding of macrophage activation, polarization, and function, the transcriptional programs regulating these processes remain poorly characterized. We stimulated human macrophages with diverse activation signals, acquiring a data set of 299 macrophage transcriptomes. Analysis of this data set revealed a spectrum of macrophage activation states extending the current M1 versus M2-polarization model. Network analyses identified central transcriptional regulators associated with all macrophage activation complemented by regulators related to stimulus-specific programs. Applying these transcriptional programs to human alveolar macrophages from smokers and patients with chronic obstructive pulmonary disease (COPD) revealed an unexpected loss of inflammatory signatures in COPD patients. Finally, by integrating murine data from the ImmGen project we propose a refined, activation-independent core signature for human and murine macrophages. This resource serves as a framework for future research into regulation of macrophage activation in health and disease.
0
Citation1,844
0
Save
0

Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing

Christina Camell et al.Sep 26, 2017
Lipolysis declines with age because NLRP3 inflammasome-activated adipose tissue macrophages reduce levels of noradrenaline by upregulating genes that control its degradation, such as GDF3 and MAOA. With increasing age, lipolysis (the breakdown of fats in the body) induced by catecholamines declines and fewer free fatty acids are mobilized. This is associated with increased fat around the abdomen, a lower exercise capacity, and a reduced ability to maintain core body temperature and to survive starvation. Vishwa Deep Dixit and colleagues now show that lipolysis declines because fatty tissue macrophages activated by NLRP3 inflammasome reduce the levels of catecholamine by upregulating genes that control its degradation, such as growth differentiation factor-3 (GDF3) and monoamine oxidase A (MAOA). Deletion of NLRP3 or GDF3, or inhibition of MAOA restores lipolysis to more youthful levels. Catecholamine-induced lipolysis, the first step in the generation of energy substrates by the hydrolysis of triglycerides1, declines with age2,3. The defect in the mobilization of free fatty acids in the elderly is accompanied by increased visceral adiposity, lower exercise capacity, failure to maintain core body temperature during cold stress, and reduced ability to survive starvation. Although catecholamine signalling in adipocytes is normal in the elderly, how lipolysis is impaired in ageing remains unknown2,4. Here we show that adipose tissue macrophages regulate the age-related reduction in adipocyte lipolysis in mice by lowering the bioavailability of noradrenaline. Unexpectedly, unbiased whole-transcriptome analyses of adipose macrophages revealed that ageing upregulates genes that control catecholamine degradation in an NLRP3 inflammasome-dependent manner. Deletion of NLRP3 in ageing restored catecholamine-induced lipolysis by downregulating growth differentiation factor-3 (GDF3) and monoamine oxidase A (MAOA) that is known to degrade noradrenaline. Consistent with this, deletion of GDF3 in inflammasome-activated macrophages improved lipolysis by decreasing levels of MAOA and caspase-1. Furthermore, inhibition of MAOA reversed the age-related reduction in noradrenaline concentration in adipose tissue, and restored lipolysis with increased levels of the key lipolytic enzymes adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL). Our study reveals that targeting neuro-immunometabolic signalling between the sympathetic nervous system and macrophages may offer new approaches to mitigate chronic inflammation-induced metabolic impairment and functional decline.
0

High-Resolution Transcriptome of Human Macrophages

Marc Beyer et al.Sep 21, 2012
Macrophages are dynamic cells integrating signals from their microenvironment to develop specific functional responses. Although, microarray-based transcriptional profiling has established transcriptional reprogramming as an important mechanism for signal integration and cell function of macrophages, current knowledge on transcriptional regulation of human macrophages is far from complete. To discover novel marker genes, an area of great need particularly in human macrophage biology but also to generate a much more thorough transcriptome of human M1- and M1-like macrophages, we performed RNA sequencing (RNA-seq) of human macrophages. Using this approach we can now provide a high-resolution transcriptome profile of human macrophages under classical (M1-like) and alternative (M2-like) polarization conditions and demonstrate a dynamic range exceeding observations obtained by previous technologies, resulting in a more comprehensive understanding of the transcriptome of human macrophages. Using this approach, we identify important gene clusters so far not appreciated by standard microarray techniques. In addition, we were able to detect differential promoter usage, alternative transcription start sites, and different coding sequences for 57 gene loci in human macrophages. Moreover, this approach led to the identification of novel M1-associated (CD120b, TLR2, SLAMF7) as well as M2-associated (CD1a, CD1b, CD93, CD226) cell surface markers. Taken together, these data support that high-resolution transcriptome profiling of human macrophages by RNA-seq leads to a better understanding of macrophage function and will form the basis for a better characterization of macrophages in human health and disease.
0
Citation249
0
Save
0

Cellular reprogramming of human monocytes is regulated by time-dependent IL4 signalling and NCOR2

Jil Sander et al.Oct 16, 2017
The clinical and therapeutic value of human in vitro generated monocyte-derived dendritic cell (moDC) and macrophages is well established. However, in line with recent findings regarding myeloid cell ontogeny and due to our limited understanding of their physiological counterparts, transcriptional regulation and heterogeneity, the full potential of these important cellular systems is still underestimated. In this study, we use cutting edge high-dimensional analysis methods to better understand the transcriptional organization, phenotypic heterogeneity and functional differences between human ex vivo isolated and in vitro generated mononuclear phagocytes with the aim to better realize their full potential in the clinic. We demonstrate that human monocytes activated by MCSF or GMCSF most closely resemble inflammatory macrophages identified in vivo, while IL4 signalling in the presence of GMCSF generates moDCs resembling inflammatory DCs in vivo, but not steady state cDC1 or cDC2. Moreover, these reprogramming regimes lead to activated monocytes that present with profoundly different transcriptomic, metabolic, phenotypic and functional profiles. Furthermore, we demonstrate that CD14+ monocytes are integrating multiple exogenous activation signals such as GMCSF and IL4 in a combinatorial and temporal fashion, resulting in a high-dimensional cellular continuum of reprogrammed monocytes dependent on the mode and timing of cytokine exposure. Utilizing nanostraw-based knockdown technology, we demonstrate that the IL4-dependent generation of moDCs relies on the induction, nuclear localization and function of the transcriptional regulator NCOR2. Finally, we unravel unappreciated heterogeneity within the clinically moDCs population and propose a novel high-dimensional phenotyping strategy to better tailor clinical quality control strategies for patient need and culture conditions to enhance therapeutic outcome.