A new version of ResearchHub is available.Try it now
Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
RB
Revital Bronstein
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
4
(25% Open Access)
Cited by:
2
h-index:
6
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
9

Evaluating Methods for Differential Gene Expression And Alternative Splicing Using Internal Synthetic Controls

Sudeep Mehrotra et al.Aug 6, 2020
Abstract High-throughput transcriptome sequencing has become a powerful tool in the study of human diseases. Identification of causal mechanisms may entail analysis of differential gene expression (DGE), differential transcript/isoform expression (DTE) and identification, classification and quantification of alternative splicing (AS) and/or detection of novel AS events. For such a global transcriptome profiling execution of multi-level data analysis methodologies is required. Each level presents its own unique challenges and the questions about their performance remains. In this work we present results from systematic and consistent assessing and comparing a number of widely used methods for detecting DGE, DTE and AS using internal control “spike-in” sequences (Sequins) in RNA-seq data. We demonstrated that inclusion of internal controls in RNA-seq experiments allows accurate determination of lower bounds detection levels, and better assessment of DGE, DTE and AS accuracy and sensitivity. Tools for RNA-seq read alignment and detection of DGE performed reasonably. More efforts are needed to improve specificity and sensitivity of DTE and AS detection. Low expression of isoforms accompanied with sequencing depth does impact sensitivity and specificity of DTE and AS tools.
9
Citation2
0
Save
0

AAV-mediated gene augmentation therapy restores critical functions in mutant iPSC-derived PRPF31+/- cells.

Elizabeth Brydon et al.Aug 8, 2019
Retinitis pigmentosa (RP) is the most common form of inherited vision loss and is characterized by degeneration of retinal photoreceptor cells and the retinal pigment epithelium (RPE). Mutations in pre-mRNA processing factor 31 (PRPF31) cause dominant RP via haploinsufficiency with incomplete penetrance. There is good evidence that the diverse severity of this disease is a result of differing levels of expression of the wild type allele among patients. Thus, we hypothesize that PRPF31-related RP will be amenable to treatment by adeno-associated virus (AAV)-mediated gene augmentation therapy. To test this hypothesis, we used induced pluripotent stem cells (iPSC) with mutations in PRPF31 and differentiated them into RPE cells. The mutant PRPF31 iPSC-RPE cells recapitulate the cellular phenotype associated with the PRPF31 pathology, including defective cell structure, diminished phagocytic function, defects in ciliogenesis, and compromised barrier function. Treatment of the mutant PRPF31 iPSC-RPE cells with AAV-PRPF31 restored normal phagocytosis and cilia formation, and partially restored structure and barrier function. These results provide proof-of concept that AAV-based gene therapy can be used to treat patients with PRPF31-related RP.
0

Human iPSC-derived RPE and retinal organoids reveal impaired alternative splicing of genes involved in pre-mRNA splicing in PRPF31 autosomal dominant retinitis pigmentosa

Adriana Buskin et al.Dec 11, 2017
Mutations in pre-mRNA processing factors (PRPFs) cause 40% of autosomal dominant retinitis pigmentosa (RP), but it is unclear why mutations in ubiquitously expressed PRPFs cause retinal disease. To understand the molecular basis of this phenotype, we have generated RP type 11 (PRPF31-mutated) patient-specific retinal organoids and retinal pigment epithelium (RPE) from induced pluripotent stem cells (iPSC). Impaired alternative splicing of genes encoding pre-mRNA splicing proteins occurred in patient-specific retinal cells and Prpf31+/- mouse retinae, but not fibroblasts and iPSCs, providing mechanistic insights into retinal-specific phenotypes of PRPFs. RPE was the most affected, characterised by loss of apical-basal polarity, reduced trans-epithelial resistance, phagocytic capacity, microvilli, and cilia length and incidence. Disrupted cilia morphology was observed in patient-derived-photoreceptors that displayed progressive features associated with degeneration and cell stress. In situ gene-editing of a pathogenic mutation rescued key structural and functional phenotypes in RPE and photoreceptors, providing proof-of-concept for future therapeutic strategies.
0

A combined RNA-seq and whole genome sequencing approach for identification of non-coding pathogenic variants in single families.

Revital Bronstein et al.Sep 12, 2019
Inherited retinal degenerations (IRDs) are at the focus of current genetic therapeutic advancements. For a genetic treatment such as gene therapy to be successful an accurate genetic diagnostic is required. Genetic diagnostics relies on the assessment of the probability that a given DNA variant is pathogenic. Non-coding variants present a unique challenge for such assessments as compared to coding variants. For one, non-coding variants are present at much higher number in the genome than coding variants. In addition, our understanding of the rules that govern the non-coding regions of the genome is less complete than our understanding of the coding regions. Methods that allow for both the identification of candidate non-coding pathogenic variants and their functional validation may help overcome these caveats allowing for a greater number of patients to benefit from advancements in genetic therapeutics. We present here an unbiased approach combining whole genome sequencing (WGS) with patient induced pluripotent stem cell (iPSC) derived retinal organoids (ROs) transcriptome analysis. With this approach we identified and functionally validated a novel pathogenic non-coding variant in a small family with a previously unresolved genetic diagnosis.