GC
Gaetan Cornilleau
Author with expertise in Genome Evolution and Polyploidy in Plants
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
0
h-index:
3
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Unique territorial and sub-chromosomal organization revealed in the holocentric mothBombyx mori

Jesús Gil et al.Sep 16, 2023
Abstract The hallmarks of chromosome organization in multicellular eukaryotes are chromosome territories (CT), chromatin compartments, and different types of domains, including topologically associated domains (TADs). Yet, most of these concepts derive from analyses of organisms with monocentric chromosomes. Here we describe the 3D genome architecture of an organism with holocentric chromosomes, the silkworm Bombyx mori . At the genome-wide scale, B. mori chromosomes form highly separated territories and lack substantial trans contacts. As described in other eukaryotes, B. mori chromosomes segregate into an active A and an inactive B compartment. Remarkably, we also identify a third compartment, Secluded “S”, with a unique contact pattern. Compartment S shows strong enrichment of short-range contacts and depletion of long-range contacts. It hosts a unique combination of genetic and epigenetic features, localizes at the periphery of CTs and shows developmental plasticity. Biophysical modeling shows that formation of such secluded domains requires a new mechanism – a high density of extruded loops within them along with low level of extrusion and compartmentalization of A and B. Together with other evidence of loop extrusion in interphase, this suggests SMC-mediated loop extrusion in this insect. Overall, our analyses highlight the evolutionary plasticity of 3D genome organization driven by a new combination of known processes.
0

Optogenetic dissection of Rac1 and Cdc42 gradient shaping

Simon Beco et al.May 8, 2018
During migration, cells present a polarized activity that is aligned with the direction of motion. This cell polarity is established by an internal molecular circuitry, without the requirement of extracellular cues. At the heart of this circuitry, Rho GTPases spontaneously form spatial gradients that define the front and back of migrating cells. At the front of the cell, active Cdc42 forms a steep gradient whereas active Rac1 forms a more extended pattern peaking a few microns away from the cell tip. What are the mechanisms shaping these gradients, and what is the functional role of the shape of these gradients? Combining optogenetics and cell micopatterning, we show that Cdc42 and Rac1 gradients are set by spatial patterns of activators and deactivators and not directly by advection or diffusion mechanisms. Cdc42 simply follows the distribution of GEFs thanks to a uniform GAP activity, whereas Rac1 shaping requires the activity of an additional GAP, β2-chimaerin, which is sharply localized at the tip of the cell. We find that β2-chimaerin recruitment depends on feedbacks from Cdc42 and Rac1. Functionally, the extent -neither the slope nor the amplitude- of RhoGTPases gradients governs cell migration. A Cdc42 gradient with a short spatial extent is required to maximize directionality during cell migration while an extended Rac1 gradient controls the speed of the cell.
0

CenH3-independent kinetochore assembly in Lepidoptera requires CENP-T

Nuria Cortes-Silva et al.Nov 9, 2019
Accurate chromosome segregation requires assembly of the multiprotein kinetochore complex at centromeres. In most eukaryotes, kinetochore assembly is primed by the histone H3 variant CenH3, which physically interacts with components of the inner kinetochore constitutive-centromere-associated-network (CCAN). Unexpected to its critical function, previous work identified that select eukaryotic lineages, including several insects, have lost CenH3, while having retained homologs of the CCAN. These findings imply alternative CCAN assembly pathways in these organisms that function in CenH3-independent manners. Here, we study the composition and assembly of CenH3-deficient kinetochores of Lepidoptera (butterflies and moths). We show that lepidopteran kinetochores consist of previously identified CCAN homologs as well as additional components including a divergent CENP-T homolog, which are required for accurate mitotic progression. Our study focuses on CENP-T that we find both necessary and sufficient to recruit the Mis12 outer kinetochore complex. In addition, CRISPR-mediated gene editing in Bombyx mori establishes an essential function of CENP-T in vivo. Finally, the retention of CENP-T homologs in other independently-derived CenH3-deficient insects indicates a conserved mechanism of kinetochore assembly between these lineages. Our study provides the first functional insights into CCAN-based kinetochore assembly pathways that function independently of CenH3, thus contributing to the emerging picture of an unexpected plasticity to build a kinetochore.
0

Gradients of Rac1 nanoclusters support spatial patterns of Rac1 signaling

Amanda Remorino et al.Apr 27, 2017
Abstract The dynamics of the cytoskeleton and cell shape relies on the coordinated activation of RhoGTPase molecular switches. Among them, Rac1 participates to the orchestration in space and time of actin branching and protrusion/retraction cycles of the lamellipodia at the cell front during mesenchymal migration. Biosensor imaging has revealed a graded concentration of active GTP-loaded Rac1 in protruding regions of the cell. Here, using single molecule imaging and super-resolution microscopy, we reveal an additional supramolecular organization of Rac1. We find that, similarly to H-Ras, Rac1 partitions and is immobilized into nanoclusters of 50-100 molecules each. These nanoclusters assemble due to the interaction of the polybasic tail of Rac1 with the phosphoinositide lipids PIP2 and PIP3. The additional interactions with GEFs, GAPs, downstream effectors, and possibly other partners are responsible for an enrichment of Rac1 nanoclusters in protruding regions of the cell. Using optogenetics and micropatterning tools, we find that activation of Rac1 leads to its immobilization in nanoclusters and that the local level of Rac1 activity matches the local density of nanoclusters. Altogether, our results show that subcellular patterns of Rac1 activity are supported by gradients of signaling nanodomains of heterogeneous molecular composition, which presumably act as discrete signaling platforms. This finding implies that graded distributions of nanoclusters might encode spatial information. Significance statement The plasma membrane of eukaryotic cells is a highly organized surface where hundreds of incoming signals are transduced to the intracellular space. How cells encode faithfully this myriad of signals is a fundamental question. Here we show that Rac1, a critical membrane-bound protein involved in the regulation of cytoskeletal dynamics, forms small aggregates together with other regulating proteins. These supramolecular assemblies, called nanoclusters, are the “quantal” units of signaling. By increasing the local concentration, nanoclusters set thresholds for downstream signaling and ensure the fidelity of information transduction. We found that Rac1 nanoclusters are distributed as spatial gradients matching the patterns of Rac1 activity. We propose that cells can encode positional information through distributed signaling quanta, hereby ensuring spatial fidelity.