JS
Jameal Samhouri
Author with expertise in Impacts of Climate Change on Marine Fisheries
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(56% Open Access)
Cited by:
2,184
h-index:
40
/
i10-index:
86
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Caribbean Corals in Crisis: Record Thermal Stress, Bleaching, and Mortality in 2005

C. Eakin et al.Nov 15, 2010
Background The rising temperature of the world's oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin. Methodology/Principal Findings Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers' field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005. Field surveys of bleaching and mortality exceeded prior efforts in detail and extent, and provided a new standard for documenting the effects of bleaching and for testing nowcast and forecast products. Collaborators from 22 countries undertook the most comprehensive documentation of basin-scale bleaching to date and found that over 80% of corals bleached and over 40% died at many sites. The most severe bleaching coincided with waters nearest a western Atlantic warm pool that was centered off the northern end of the Lesser Antilles. Conclusions/Significance Thermal stress during the 2005 event exceeded any observed from the Caribbean in the prior 20 years, and regionally-averaged temperatures were the warmest in over 150 years. Comparison of satellite data against field surveys demonstrated a significant predictive relationship between accumulated heat stress (measured using NOAA Coral Reef Watch's Degree Heating Weeks) and bleaching intensity. This severe, widespread bleaching and mortality will undoubtedly have long-term consequences for reef ecosystems and suggests a troubled future for tropical marine ecosystems under a warming climate.
0
Paper
Citation817
0
Save
0

Ecologists should not use statistical significance tests to interpret simulation model results

J. White et al.Nov 29, 2013
Simulation models are widely used to represent the dynamics of ecological systems. A common question with such models is how changes to a parameter value or functional form in the model alter the results. Some authors have chosen to answer that question using frequentist statistical hypothesis tests (e.g. ANOVA). This is inappropriate for two reasons. First, p‐values are determined by statistical power (i.e. replication), which can be arbitrarily high in a simulation context, producing minuscule p‐values regardless of the effect size. Second, the null hypothesis of no difference between treatments (e.g. parameter values) is known a priori to be false, invalidating the premise of the test. Use of p‐values is troublesome (rather than simply irrelevant) because small p‐values lend a false sense of importance to observed differences. We argue that modelers should abandon this practice and focus on evaluating the magnitude of differences between simulations. Synthesis Researchers analyzing field or lab data often test ecological hypotheses using frequentist statistics (t‐tests, ANOVA, etc.) that focus on p‐values. Field and lab data usually have limited sample sizes, and p‐values are valuable for quantifying the probability of making incorrect inferences in that situation. However, modern ecologists increasingly rely on simulation models to address complex questions, and those who were trained in frequentist statistics often apply the hypothesis‐testing approach inappropriately to their simulation results. Our paper explains why p‐values are not informative for interpreting simulation models, and suggests better ways to evaluate the ecological significance of model results.
0
Paper
Citation357
0
Save
0

Spatial variation in exploited metapopulations obscures risk of collapse

Daniel Okamoto et al.May 5, 2018
Unanticipated declines among exploited species have commonly occurred despite harvests that appeared sustainable prior to collapse. This is particularly true in the oceans where spatial scales of management are often mismatched with spatially complex metapopulations. We explore causes, consequences and potential solutions for spatial mismatches in harvested metapopulations in three ways. First, we generate novel theory illustrating when and how harvesting metapopulations increases spatial variability and in turn masks local scale volatility. Second, we illustrate why spatial variability in harvested metapopulations leads to negative consequences using an empirical example of a Pacific herring metapopulation. Finally, we construct a numerical management strategy evaluation model to identify and highlight potential solutions for mismatches in spatial scale and spatial variability. Our results highlight that spatial complexity can promote stability at large scales, however ignoring spatial complexity produces cryptic and negative consequences for people and animals that interact with resources at small scales. Harvesting metapopulations magnifies spatial variability, which creates discrepancies between regional and local trends while increasing risk of local population collapses. Such effects asymmetrically impact locally constrained fishers and predators, which are more exposed to risks of localized collapses. Importantly, we show that dynamically optimizing harvest can minimize local risk without sacrificing yield. Thus, multiple nested scales of management may be necessary to avoid cryptic collapses in metapopulations and the ensuing ecological, social and economic consequences.
0

Climate Change Influences via Species Distribution Shifts and Century‐Scale Warming in an End‐To‐End California Current Ecosystem Model

Owen Liu et al.Jan 1, 2025
ABSTRACT Climate change can impact marine ecosystems through many biological and ecological processes. Ecosystem models are one tool that can be used to simulate how the complex impacts of climate change may manifest in a warming world. In this study, we used an end‐to‐end Atlantis ecosystem model to compare and contrast the effects of climate‐driven species redistribution and projected temperature from three separate climate models on species of key commercial importance in the California Current Ecosystem. Adopting a scenario analysis approach, we used Atlantis to measure differences in the biomass, abundance, and weight at age of pelagic and demersal species among six simulations for the years 2013–2100 and tracked the implications of those changes for spatially defined California Current fishing fleets. The simulations varied in their use of forced climate‐driven species distribution shifts, time‐varying projections of ocean warming, or both. In general, the abundance and biomass of coastal pelagic species like Pacific sardine ( Sardinops sagax ) and northern anchovy ( Engraulis mordax ) were more sensitive to projected climate change, while demersal groups like Dover sole ( Microstomus pacificus ) experienced smaller changes due to counteracting effects of spatial distribution change and metabolic effects of warming. Climate‐driven species distribution shifts and the resulting changes in food web interactions were more influential than warming on end‐of‐century biomass and abundance patterns. Spatial projections of changes in fisheries catch did not always align with changes in abundance of their targeted species. This mismatch is likely due to species distribution shifts into or out of fishing areas and emphasizes the importance of a spatially explicit understanding of both climate change effects and fishing dynamics. We illuminate important biological and ecological pathways through which climate change acts in an ecosystem context and end with a discussion of potential management implications and future directions for climate change research using ecosystem models.
0
0
Save
0

High resolution assessment of commercial fisheries activity along the US West Coast using Vessel Monitoring System data with a case study using California groundfish fisheries

Yi‐Hui Wang et al.Jun 6, 2024
Commercial fisheries along the US West Coast are important components of local and regional economies. They use various fishing gear, target a high diversity of species, and are highly spatially heterogeneous, making it challenging to generate a synoptic picture of fisheries activity in the region. Still, understanding the spatial and temporal dynamics of US West Coast fisheries is critical to meet the US legal mandate to manage fisheries sustainably and to better coordinate activities among a growing number of users of ocean space, including offshore renewable energy, aquaculture, shipping, and interactions with habitats and key non-fishery species such as seabirds and marine mammals. We analyzed vessel tracking data from Vessel Monitoring System (VMS) from 2010 to 2017 to generate high-resolution spatio-temporal estimates of contemporary fishing effort across a wide range of commercial fisheries along the entire US West Coast. We identified over 247,000 fishing trips across the entire VMS data, covering over 25 different fisheries. We validated the spatial accuracy of our analyses using independent estimates of spatial groundfish fisheries effort generated through the NOAA’s National Marine Fisheries Service Observer Program. Additionally, for commercial groundfish fisheries operating in federal waters in California, we combined the VMS data with landings and ex-vessel value data from California commercial fisheries landings receipts to generate highly resolved estimates of landings and ex-vessel value, matching over 38,000 fish tickets with VMS data that included 87% of the landings and 76% of the ex-vessel value for groundfish. We highlight fisheries-specific and spatially-resolved patterns of effort, landings, and ex-vessel value, a bimodal distribution of fishing effort with respect to depth, and variable and generally declining effort over eight years. The information generated by our study can help inform future sustainable spatial fisheries management and other activities in the marine environment including offshore renewable energy planning.
0
0
Save