KD
Ken Dong
Author with expertise in Ubiquitin-Proteasome Proteolytic Pathway
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
389
h-index:
18
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Loss of the Tumor Suppressor BAP1 Causes Myeloid Transformation

Anwesha Dey et al.Aug 10, 2012
+24
R
D
A
De-ubiquitinating enzyme BAP1 is mutated in a hereditary cancer syndrome with increased risk of mesothelioma and uveal melanoma. Somatic BAP1 mutations occur in various malignancies. We show that mouse Bap1 gene deletion is lethal during embryogenesis, but systemic or hematopoietic-restricted deletion in adults recapitulates features of human myelodysplastic syndrome (MDS). Knockin mice expressing BAP1 with a 3xFlag tag revealed that BAP1 interacts with host cell factor-1 (HCF-1), O-linked N-acetylglucosamine transferase (OGT), and the polycomb group proteins ASXL1 and ASXL2 in vivo. OGT and HCF-1 levels were decreased by Bap1 deletion, indicating a critical role for BAP1 in stabilizing these epigenetic regulators. Human ASXL1 is mutated frequently in chronic myelomonocytic leukemia (CMML) so an ASXL/BAP1 complex may suppress CMML. A BAP1 catalytic mutation found in a MDS patient implies that BAP1 loss of function has similar consequences in mice and humans.
0
Citation387
0
Save
1

Ubiquitin modulates 26S proteasome conformational dynamics and promotes substrate degradation

Erik Jönsson et al.Aug 19, 2021
+2
J
Z
E
SUMMARY The 26S proteasome is the major ATP-dependent protease in eukaryotic cells, where it catalyzes the degradation of thousands of proteins for general homeostasis and the control of vital processes. It specifically recognizes appropriate substrates through attached ubiquitin chains and uses its ATPase motor for mechanical unfolding and translocation into a proteolytic chamber. Here, we used single-molecule Förster Resonance Energy Transfer (FRET) measurements to provide unprecedented insights into the mechanisms of selective substrate engagement, ATP-dependent degradation, and the regulation of these processes by ubiquitin chains. Our assays revealed the proteasome conformational dynamics and allowed monitoring individual substrates as they progress through the central channel during degradation. We found that rapid transitions between engagement- and processing-competent conformations of the proteasome control substrate access to the ATPase motor. Ubiquitin-chain binding functions as an allosteric regulator to slow these transitions, stabilize the engagement-competent state, and facilitate degradation initiation. The global conformational transitions cease upon substrate engagement, and except for apparent motor slips when encountering stably folded domains, the proteasome remains in processing-competent states for substrate translocation and unfolding, which is further accelerated by ubiquitin chains. Our studies revealed the dependence of ATP-dependent substrate degradation on the conformational dynamics of the proteasome and its allosteric regulation by ubiquitin chains, which ensure substrate selectivity and prioritization in a crowded cellular environment.
1
Paper
Citation2
0
Save
0

Deconvolution of substrate processing by the 26S proteasome reveals a selective kinetic gateway to degradation

Jared Bard et al.Jun 30, 2018
A
K
C
J
The 26S proteasome is the principle macromolecular machine responsible for protein degradation in eukaryotes. However, little is known about the detailed kinetics and coordination of the underlying substrate-processing steps of the proteasome, and their correlation with observed conformational states. Here, we used reconstituted 26S proteasomes with unnatural amino acid-attached fluorophores in a series of FRET and anisotropy-based assays to probe substrate-proteasome interactions, the individual steps of the processing pathway, and the conformational state of the proteasome itself. We develop a complete kinetic picture of proteasomal degradation, which reveals that the engagement steps prior to substrate commitment are fast relative to subsequent deubiquitination, translocation and unfolding. Furthermore, we find that non-ideal substrates are rapidly rejected by the proteasome, which thus employs a kinetic proofreading mechanism to ensure degradation fidelity and substrate prioritization.
0

Nub1 traps unfolded FAT10 for ubiquitin-independent degradation by the 26S proteasome

Connor Arkinson et al.Jun 12, 2024
+3
C
K
C
Summary The ubiquitin-like modifier FAT10 targets hundreds of proteins in the mammalian immune system to the 26S proteasome for degradation. This degradation pathway requires the cofactor Nub1, yet the underlying mechanisms remain unknown. Here, we reconstituted a minimal in vitro system and revealed that Nub1 utilizes FAT10’s intrinsic instability to trap its N-terminal ubiquitin-like domain in an unfolded state and deliver it to the 26S proteasome for engagement, allowing the degradation of FAT10-ylated substrates in a ubiquitin– and p97-independent manner. Through hydrogen-deuterium exchange, structural modeling, and site-directed mutagenesis, we identified the formation of a peculiar complex with FAT10 that activates Nub1 for docking to the 26S proteasome, and our cryo-EM studies visualized the highly dynamic Nub1 complex bound to the proteasomal Rpn1 subunit during FAT10 delivery and the early stages of ATP-dependent degradation. These studies thus identified a novel mode of cofactor-mediated, ubiquitin-independent substrate delivery to the 26S proteasome that relies on trapping partially unfolded states for engagement by the proteasomal ATPase motor.