Escherichia coli can induce a group of stress-response proteins, including carbon starvation-induced lipoprotein (Slp), which is an outer membrane lipoprotein expressed in response to stressful environments. In this paper, slp null mutant E. coli were constructed by insertion of the group II intron, and then the growth sensitivity of the slp mutant strain was measured under 0.6% (vol/vol) hydrogen peroxide. The changes in resistance to hydrogen peroxide stress were investigated by detecting antioxidant activity and gene expression in the slp mutant strain. The results showed that deletion of the slp gene increased the sensitivity of E. coli under 0.6% (vol/vol) hydrogen peroxide oxidative stress. Analysis of the unique mapping rates from the transcriptome libraries revealed that four of thirteen remarkably up/down-regulated genes in E. coli were involved in antioxidant enzymes after mutation of the slp gene. Mutation of the slp gene caused a significant increase in catalase activity, which contributed to an increase in glutathione peroxidase activity. The katG gene was activated by the OxyR regulator, which was activated directly by 0.6% (vol/vol) hydrogen peroxide, and HPI encoded by katG was induced against oxidative stress. Therefore, the carbon starvation-induced lipoprotein Slp regulates the expression of antioxidant enzymes and the transcriptional activator OxyR in response to the hydrogen peroxide environment, ensuring that cells are protected from hydrogen peroxide oxidative stress at the level of enzyme activity and gene expression.