EG
Erdan Gu
Author with expertise in Optical Interconnect Technologies
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(56% Open Access)
Cited by:
2,359
h-index:
53
/
i10-index:
161
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Visible-Light Communications Using a CMOS-Controlled Micro-Light- Emitting-Diode Array

Jonathan McKendry et al.Nov 8, 2011
We report the high-frequency modulation of individual pixels in 8 × 8 arrays of III-nitride-based micro-pixellated light-emitting diodes, where the pixels within the array range from 14 to 84 μ m in diameter. The peak emission wavelengths of the devices are 370, 405, 450 and 520 nm, respectively. Smaller area micro-LED pixels generally exhibit higher modulation bandwidths than their larger area counterparts, which is attributed to their ability to be driven at higher current densities. The highest optical -3 dB modulation bandwidths from these devices are shown to be in excess of 400 MHz, which, to our knowledge, are the highest bandwidths yet reported for GaN LEDs. These devices are also integrated with a complementary metal-oxide-semiconductor (CMOS) driver array chip, allowing for simple computer control of individual micro-LED pixels. The bandwidth of the integrated micro-LED/CMOS pixels is shown to be up to 185 MHz; data transmission at bit rates up to 512 Mbit/s is demonstrated using on-off keying non return-to-zero modulation with a bit-error ratio of less than 1 × 10 -10 , using a 450 nm-emitting 24 μm diameter CMOS-controlled micro-LED. As the CMOS chip allows for up to 16 independent data inputs, this device demonstrates the potential for multi-Gigabit/s parallel data transmission using CMOS-controlled micro-LEDs.
0

Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes

Zheng Gong et al.Jan 1, 2010
We have systematically investigated the impact of device size scaling on the light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes (LEDs). Devices with diameters in the range 20–300 μm have been studied. It is shown that smaller LED pixels can deliver higher power densities (despite the lower absolute output powers) and sustain higher current densities. Investigations of the electroluminescence characteristics of differently sized pixels against current density reveal that the spectral shift is dominated by blueshift at the low current density level and then by redshift at the high current density level, owing to the competition between the bandgap shrinkage caused by self-heating and band-filling effects. The redshift of the emission wavelength with increasing current density is much faster and larger for the bigger pixels, suggesting that the self-heating effect is also size dependent. This is further confirmed by the junction-temperature rise measured by the established spectral shift method. It is shown that the junction-temperature rise in smaller pixels is slower, which in turn explains why the smaller redshift of the emission wavelength with current density is present in smaller pixels. The measured size-dependent junction temperature is in reasonable agreement with finite element method simulation results.