YT
Yi Tang
Author with expertise in Natural Products as Sources of New Drugs
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(67% Open Access)
Cited by:
1,559
h-index:
78
/
i10-index:
240
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Navigating the Fungal Polyketide Chemical Space: From Genes to Molecules

Yit‐Heng Chooi et al.Aug 31, 2012
The iterative type I polyketide synthases (IPKSs) are central to the biosynthesis of an enormously diverse array of natural products in fungi. These natural products, known as polyketides, exhibit a wide range of biological activities and include clinically important drugs as well as undesirable toxins. The PKSs synthesize these structurally diverse polyketides via a series of decarboxylative condensations of malonyl-CoA extender units and β-keto modifications in a highly programmed manner. Significant progress has been made over the past few years in understanding the biosynthetic mechanism and programming of fungal PKSs. The continuously expanding fungal genome sequence data have sparked genome-directed discoveries of new fungal PKSs and associated products. The increasing number of fungal PKSs that have been linked to their products along with in-depth biochemical and structural characterizations of these large enzymes have remarkably improved our knowledge on the molecular basis for polyketide structural diversity in fungi. This Perspective highlights the recent advances and examines how the newly expanded paradigm has contributed to our ability to link fungal PKS genes to chemical structures and vice versa. The knowledge will help us navigate through the logarithmically expanding seas of genomic information for polyketide compound discovery and provided opportunities to reprogram these megasynthases to generate new chemical entities.
0
Citation239
0
Save
0

Structural Basis for Stereoselective Dehydration and Hydrogen-Bonding Catalysis by the SAM-Dependent Pericyclase LepI

Yujuan Cai et al.Dec 10, 2018
ABSTRACT LepI is an S -adenosylmethionine (SAM)-dependent pericyclase that catalyzes the formation of 2-pyridone natural product leporin C. Biochemical characterization showed LepI can catalyze the stereoselective dehydration to yield a reactive ( E )-quinone methide which can undergo a bifurcating intramolecular Diels-Alder (IMDA) and hetero-Diels-Alder (HDA) cyclization from an ambimodal transition state, and a [3,3]-retro-Claisen rearrangement to recycle the IMDA product into leporin C. Here we solved the X-ray crystal structures of SAM-bound LepI, and in complex with a substrate analog, the product leporin C, and a retro-Claisen reaction transition-state analog to understand the structural basis for the multitude of reactions. Structural and mutational analysis revealed how Nature evolves a classic methyltransferase active site into one that can serve as a dehydratase and a multifunctional pericyclase. Catalysis of both sets of reactions employ His133 and Arg295, two active site residues that are not found in canonical methyltransferases. An alternative role of SAM, which is not found to be in direct contact of the substrate, is also proposed.
0
Paper
Citation1
0
Save
4

Elucidating the molecular programming of a nonlinear nonribosomal peptide synthetase responsible for fungal siderophore biosynthesis

Matthew Jenner et al.Oct 10, 2022
ABSTRACT Siderophores belonging to the ferrichrome family are essential for the viability of fungal species and play a key role for virulence of numerous pathogenic fungi. Despite their biological significance, our understanding of how these iron-chelating cyclic hexapeptides are assembled by non-ribosomal peptide synthetase (NRPS) assembly lines remains poorly understood, primarily due to the nonlinearity exhibited by the domain architecture. Herein, we report the biochemical characterization of the SidC NRPS, responsible for construction of the intracellular siderophore ferricrocin. In vitro reconstitution of purified SidC revealed its ability to produce ferricrocin and its structural variant, ferrichrome. Application of intact protein mass spectrometry uncovered several non-canonical events during peptidyl siderophore biosynthesis, including inter-modular loading of amino acid substrates and an adenylation domain capable of poly-amide bond formation. This work expands the scope of NRPS programming, allows biosynthetic assignment of ferrichrome NRPSs, and sets the stage for reprogramming towards novel hydroxamate scaffolds.
0

HEx: a heterologous expression platform for the discovery of fungal natural products

Colin Harvey et al.Jan 15, 2018
For decades, fungi have been a source of FDA-approved natural products such as penicillin, cyclosporine, and the statins. Recent breakthroughs in DNA sequencing suggest that millions of fungal species exist on Earth with each genome encoding pathways capable of generating as many as dozens of natural products. However, the majority of encoded molecules are difficult or impossible to access because the organisms are uncultivable or the genes are transcriptionally silent. To overcome this bottleneck in natural product discovery, we developed the HEx (Heterologous EXpression) synthetic biology platform for rapid, scalable expression of fungal biosynthetic genes and their encoded metabolites in Saccharomyces cerevisiae. We applied this platform to 41 fungal biosynthetic gene clusters from diverse fungal species from around the world, 22 of which produced detectable compounds. These included novel compounds with unexpected biosynthetic origins, particularly from poorly studied species. This result establishes the HEx platform for rapid discovery of natural products from any fungal species, even those that are uncultivable, and opens the door to discovery of the next generation of natural products.
0

Synthesis of melanin-like amino acid surfactant with enzymatic hydrolysates from silk degumming water

Hong Zhou et al.Aug 1, 2024
The degummed wastewater from silk processing contains a huge amount of amino acids and polypeptides from sericin. The silk degumming water is far from being exploited fully. Sericin in the degumming water is generally wasted and causes environmental pollution. In this study, simulated silk degumming water was hydrolyzed by alkaline protease to produce abundant amino acids and polypeptides. After enzymatic hydrolysis, the maximum free amino groups concentration in the silk degumming water was approximately 54 mM. It facilitated the recycling of silk degumming water for the production of melanin-like amino acid surfactants as raw materials. 4-Tert-butylcatechol was used as the starting material to generate o-quinone via oxidation by ceric ammonium nitrate. o-Quinone was coupled with free amino groups in enzymatic hydrolysates of silk degumming water to synthesize a sericin-based amino acid surfactant as hydrophobic and hydrophilic group, respectively. Through the green and simple synthesis route, the product was characterized to have a novel melanin-like structure. The product exhibited superior surface-active properties by lowering the surface tension to 32.39 mN m
Load More