PW
Peer Wulff
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
1,610
h-index:
35
/
i10-index:
53
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes

Roman Romanov et al.Dec 19, 2016
The hypothalamus contains the highest diversity of neurons in the brain. Many of these neurons can co-release neurotransmitters and neuropeptides in a use-dependent manner. Investigators have hitherto relied on candidate protein-based tools to correlate behavioral, endocrine and gender traits with hypothalamic neuron identity. Here we map neuronal identities in the hypothalamus by single-cell RNA sequencing. We distinguished 62 neuronal subtypes producing glutamatergic, dopaminergic or GABAergic markers for synaptic neurotransmission and harboring the ability to engage in task-dependent neurotransmitter switching. We identified dopamine neurons that uniquely coexpress the Onecut3 and Nmur2 genes, and placed these in the periventricular nucleus with many synaptic afferents arising from neuromedin S+ neurons of the suprachiasmatic nucleus. These neuroendocrine dopamine cells may contribute to the dopaminergic inhibition of prolactin secretion diurnally, as their neuromedin S+ inputs originate from neurons expressing Per2 and Per3 and their tyrosine hydroxylase phosphorylation is regulated in a circadian fashion. Overall, our catalog of neuronal subclasses provides new understanding of hypothalamic organization and function.
0

Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons

Peer Wulff et al.Feb 10, 2009
Hippocampal theta (5–10 Hz) and gamma (35–85 Hz) oscillations depend on an inhibitory network of GABAergic interneurons. However, the lack of methods for direct and cell-type-specific interference with inhibition has prevented better insights that help link synaptic and cellular properties with network function. Here, we generated genetically modified mice (PV-Δγ 2 ) in which synaptic inhibition was ablated in parvalbumin-positive (PV+) interneurons. Hippocampal local field potential and unit recordings in the CA1 area of freely behaving mice revealed that theta rhythm was strongly reduced in these mice. The characteristic coupling of theta and gamma oscillations was strongly altered in PV-Δγ 2 mice more than could be accounted for by the reduction in theta rhythm only. Surprisingly, gamma oscillations were not altered. These data indicate that synaptic inhibition onto PV+ interneurons is indispensable for theta- and its coupling to gamma oscillations but not for rhythmic gamma-activity in the hippocampus. Similar alterations in rhythmic activity were obtained in a computational hippocampal network model mimicking the genetic modification, suggesting that intrahippocampal networks might contribute to these effects.
0

Parvalbumin expression identifies subicular principal cells with high projection specificity

Gilda Baccini et al.Aug 16, 2024
Abstract The calcium-binding protein parvalbumin is an established marker for a subset of cortical inhibitory interneurons with similar biophysical features and connectivity. However, parvalbumin is also expressed in a small population of excitatory cells in layer 5 of the neocortex with specific sub-cortical projection targets. Parvalbumin may thus also in principal cells identify particular subclasses with distinct connectivity and function. Here we investigated whether parvalbumin is expressed in excitatory neurons of the hippocampal formation and if so, whether it delineated neurons with specific features. We report parvalbumin-expressing glutamatergic cells in the distal subiculum, which -based on location, connectivity and gene expression - separated into two subclasses: neurons in deep layers, which specifically project to the antero-ventral thalamus and neurons in superficial layers, which project to the mamillary bodies. Contrary to most adjacent pyramidal cells parvalbumin-positive neurons were non-bursting and displayed straight apical dendrites devoid of oblique dendrites. Functionally, the projections diverged from classical driver/modulator subdivisions. Parvalbumin expression thus marks two sub-types of subicular projection neurons with high target specificity and unique functional features.
0

Disentangling neuronal inhibition and inhibitory pathways in the lateral habenula

Jack Webster et al.May 9, 2019
The lateral habenula (LHb) is hyperactive in depression, and thus potentiating inhibition of this structure makes an interesting target for future antidepressant therapies. However, the circuit mechanisms mediating inhibitory signalling within the LHb are not well-known. We addressed this issue by studying LHb neurons expressing either parvalbumin (PV), neuron-derived neurotrophic factor (Ndnf) or somatostatin (SOM), three markers of particular sub-classes of neocortical inhibitory neurons. While we report that Ndnf is not representative of any particular sub-population of LHb neuron, we find that both PV and SOM are expressed by physiologically distinct sub-classes. Furthermore, we describe multiple sources of inhibitory input to the LHb arising from both local PV-positive neurons, and from PV-positive neurons in the medial dorsal thalamic nucleus, and from SOM-positive neurons in the ventral pallidum. These findings hence provide new insight into inhibitory control within the LHb, and highlight that this structure is more neuronally diverse than previously thought.Summary The lateral habenula receives inhibitory input from three distinct sources: from local PV-positive neurons, from PV-positive neurons in the medial dorsal thalamic nucleus (MDT); and from SOM-positive neurons in the ventral pallidum (VP).![Figure][1] Significance statement The circuitry by which inhibitory signalling is processed within the lateral habenula is currently not well understood; yet this is an important topic as inhibition of the lateral habenula has been shown to have antidepressant efficacy. We therefore investigated inhibitory signalling mechanisms within the lateral habenula by studying input neurons expressing markers commonly associated with inhibitory identity. We identity sources of inhibitory input from both local neurons, and arising from neurons in the medial dorsal thalamic nucleus and ventral pallidum.Contributions J.F.W. performed the experiments. R.V. contributed to experiments. J.F.W. analysed the data. K.B. and P.W. designed and performed the in situ hybridisation experiments. C.W. designed and supervised the study, and helped J.F.W write the manuscript. R.V. and S.S. contributed to the manuscript and discussions. [1]: pending:yes