WW
Wolfgang Wagermaier
Author with expertise in Bone Tissue Engineering and Biomaterials
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
1,267
h-index:
44
/
i10-index:
81
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cooperative deformation of mineral and collagen in bone at the nanoscale

Himadri Gupta et al.Nov 10, 2006
+3
W
J
H
In biomineralized tissues such as bone, the recurring structural motif at the supramolecular level is an anisotropic stiff inorganic component reinforcing the soft organic matrix. The high toughness and defect tolerance of natural biomineralized composites is believed to arise from these nanometer scale structural motifs. Specifically, load transfer in bone has been proposed to occur by a transfer of tensile strains between the stiff inorganic (mineral apatite) particles via shearing in the intervening soft organic (collagen) layers. This raises the question as to how and to what extent do the mineral particles and fibrils deform concurrently in response to tissue deformation. Here we show that both mineral nanoparticles and the enclosing mineralized fibril deform initially elastically, but to different degrees. Using in situ tensile testing with combined high brilliance synchrotron X-ray diffraction and scattering on the same sample, we show that tissue, fibrils, and mineral particles take up successively lower levels of strain, in a ratio of 12:5:2. The maximum strain seen in mineral nanoparticles (≈0.15–0.20%) can reach up to twice the fracture strain calculated for bulk apatite. The results are consistent with a staggered model of load transfer in bone matrix, exemplifying the hierarchical nature of bone deformation. We believe this process results in a mechanism of fibril–matrix decoupling for protecting the brittle mineral phase in bone, while effectively redistributing the strain energy within the bone tissue.
0
Paper
Citation599
0
Save
0

Nanoscale Deformation Mechanisms in Bone

Himadri Gupta et al.Sep 22, 2005
+5
G
W
H
Deformation mechanisms in bone matrix at the nanoscale control its exceptional mechanical properties, but the detailed nature of these processes is as yet unknown. In situ tensile testing with synchrotron X-ray scattering allowed us to study directly and quantitatively the deformation mechanisms at the nanometer level. We find that bone deformation is not homogeneous but distributed between a tensile deformation of the fibrils and a shearing in the interfibrillar matrix between them.
0

Architecture of the osteocyte network correlates with bone material quality

Michael Kerschnitzki et al.Mar 13, 2013
+4
M
P
M
ABSTRACT In biological tissues such as bone, cell function and activity crucially depend on the physical properties of the extracellular matrix which the cells synthesize and condition. During bone formation and remodeling, osteoblasts get embedded into the matrix they deposit and differentiate to osteocytes. These cells form a dense network throughout the entire bone material. Osteocytes are known to orchestrate bone remodeling. However, the precise role of osteocytes during mineral homeostasis and their potential influence on bone material quality remains unclear. To understand the mutual influence of osteocytes and extracellular matrix, it is crucial to reveal their network organization in relation to the properties of their surrounding material. Here we visualize and topologically quantify the osteocyte network in mineralized bone sections with confocal laser scanning microscopy. At the same region of the sample, synchrotron small-angle X-ray scattering is used to determine nanoscopic bone mineral particle size and arrangement relative to the cell network. Major findings are that most of the mineral particles reside within less than a micrometer from the nearest cell network channel and that mineral particle characteristics depend on the distance from the cell network. The architecture of the network reveals optimization with respect to transport costs between cells and to blood vessels. In conclusion, these findings quantitatively show that the osteocyte network provides access to a huge mineral reservoir in bone due to its dense organization. The observed correlation between the architecture of osteocyte networks and bone material properties supports the hypothesis that osteocytes interact with their mineralized vicinity and thus, participate in bone mineral homeostasis.
0
Citation330
0
Save
0

Solvent Cavitation during Ambient Pressure Drying of Silica Aerogels

Julien Gonthier et al.Jun 12, 2024
+3
T
E
J
Ambient-pressure drying of silica gels stands out as an economical and accessible process for producing monolithic silica aerogels. Gels experience significant deformations during drying due to the capillary pressure generated at the liquid–vapor interface in submicron pores. Proper control of the gel properties and the drying rate is essential to enable reversible drying shrinkage without mechanical failure. Recent in operando microcomputed X-ray tomography (μCT) imaging revealed the kinetics of the phase composition during drying and spring-back. However, to fully explain the underlying mechanisms, spatial resolution is required. Here we show evidence of evaporation by hexane cavitation during the ambient-pressure drying of silylated silica gels by spatially resolved quantitative analysis of μCT data supported by wide-angle X-ray scattering measurements. Cavitation consists of the rupture of the pore liquid put under tension by capillary pressure, creating vapor bubbles within the gels. We found the presence of a homogeneously distributed vapor-air phase in the gels well ahead of the maximum shrinkage. The onset of this vapor/air phase corresponded to a pore volume shrinkage of ca. 50 vol % that was attributed to a critical stiffening of the silica skeleton enabling cavitation. Our results provide new aspects of the relation between the shape changes of silica gels during drying and the evaporation mechanisms. We conclude that stress release by cavitation may be at the origin of the resistance of the silica skeleton to drying stresses. This opens the path toward producing larger monolithic silica aerogels by fine-tuning the drying conditions to exploit cavitation.
0

Analysis of Finnish blue mussel (Mytilus edulis L.) shell: Biomineral ultrastructure, organic-rich interfacial matrix and mechanical behavior

Pezhman Mohammadi et al.May 16, 2019
M
M
W
P
Studying various marine biomineralized ultrastructures reveals the appearance of common architectural designs and building blocks in materials with fascinating mechanical properties that match perfectly to their biological tasks. Advanced mechanical properties of biological materials are attributed to evolutionary optimized molecular architectures and structural hierarchy. One example which has not yet been structurally investigated in great detail is the shell of Mytilus edulis L. (Finnish blue mussel) found in the archipelago of SW-Finland. Through a combination of various state-of-the-art techniques such as high-resolution electron microscopy imaging, Fourier-transformed infrared spectroscopy, powder X-ray diffraction, synchrotron wide-angle X-ray diffraction, nanoindentation and protein analysis, both the inorganic mineralized components as well as the organic-rich matrix were extensively characterized. We found very similar ultra-architecture across the shell of M. edulis L. as compared to the widely studied and closely related M. edulis . However, we also found interesting differences, for instance in the thickness and degree of orientation of the mineralized layers indicating dissimilar properties and related alterations in the biomineralization processes. Our results show that the shell of M. edulis L. has a gradient of mechanical properties, with the increase in the stiffness and the hardness from anterior to the posterior region of the shell. The shell is made from distinct and recognizable mineralized layers each varying in thickness and microstructural features. At posterior regions of the shell, moving from dorsal to ventral side, these layers are an oblique prismatic layer, a prismatic layer and a nacreous layer, in which the oblique prismatic layer is found to be the main and thickest mineralized layer of the shell. Probing the calcified rods in the oblique prismatic layer using high resolution SEM imaging revealed opening of channels with a diameters of 40-50 nm and lengths up to a micrometer extending through the rods. The chitin and protein have been found to be the main component of the organic-rich interfacial matrix as expected. Protein analysis showed two abundant proteins with sizes around 100 kD and 45 kD which likely not only regulates biomineralization and adhesion of the crystals but also governing the intrinsic-extrinsic toughening in the shell. Overall, this detailed analysis provides new structural insights into biomineralization of marine shells in general.
1

Gradients of orientation, composition and hydration of proteins for efficient light collection by the cornea of the horseshoe crab

Oliver Spaeker et al.Feb 21, 2022
+11
B
G
O
Abstract The lateral eyes of the horseshoe crab, Limulus polyphemus , are the largest compound eyes within recent Arthropoda. While this visual system has been extensively described before, the precise mechanism allowing vision has remained controversial. Correlating quantitative refractive index (RI) mapping and detailed structural analysis, we demonstrate how gradients of RI in the cornea result from the hierarchical organization of chitin-protein fibers, heterogeneity in protein composition and bromine doping, as well as spatial variation in water content. Combining the realistic cornea structure and measured RI gradients with full-wave optical modelling and ray-tracing approaches, we show that the light collection mechanism depends on both refraction-based graded index (GRIN) optics and total internal reflection. The optical properties of the cornea are governed by different mechanisms at different hierarchical levels, demonstrating the remarkable versatility of arthropod cuticle. One-sentence summary Structural hierarchy and protein hydration determine the optical performance of the cornea of L. polyphemus .