LB
Lauren Brick
Author with expertise in Molecular Basis of Rett Syndrome and Related Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
222
h-index:
12
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

De novo mutations in the GTP/GDP-binding region of RALA, a RAS-like small GTPase, cause intellectual disability and developmental delay

Susan Hiatt et al.Jul 29, 2018
Mutations that alter signaling of RAS/MAPK-family proteins give rise to a group of Mendelian diseases known as RASopathies, but the matrix of genotype-phenotype relationships is still incomplete, in part because there are many RAS-related proteins, and in part because the phenotypic consequences may be variable and/or pleiotropic. Here, we describe a cohort of ten cases, drawn from six clinical sites and over 16,000 sequenced probands, with de novo protein-altering variation in RALA, a RAS-like small GTPase. All probands present with speech and motor delays, and most have intellectual disability, low weight, short stature, and facial dysmorphism. The observed rate of de novo RALA variants in affected probands is significantly higher (p=4.93 x 10-11) than expected from the estimated mutation rate. Further, all de novo variants described here affect conserved residues within the GTP/GDP-binding region of RALA; in fact, six alleles arose at only two codons, Val25 and Lys128. We directly assayed GTP hydrolysis and RALA effector-protein binding, and all but one tested variant significantly reduced both activities. The one exception, S157A, reduced GTP hydrolysis but significantly increased RALA-effector binding, an observation similar to that seen for oncogenic RAS variants. These results show the power of data sharing for the interpretation and analysis of rare variation, expand the spectrum of molecular causes of developmental disability to include RALA, and provide additional insight into the pathogenesis of human disease caused by mutations in small GTPases.
0

Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform specific start-loss mutations of essential genes can cause genetic diseases

Elena Perenthaler et al.Oct 10, 2019
Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early onset, therapy resistant seizures and developmental delay. Here we report on 12 individuals from 10 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly and visual disturbance. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A>G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in brain cell types, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modelled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE. Importantly, it also shows that isoform specific start-loss mutations causing expression loss of a tissue relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies.
0

DNA-binding affinity and specificity determine the phenotypic diversity in BCL11B-related disorders

Ivana Lessel et al.Jan 1, 2025
BCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive. To dissect these, we performed genotype-phenotype correlations of 92 affected individuals harboring a pathogenic or likely pathogenic BCL11B variant, followed by immune phenotyping, analysis of chromatin immunoprecipitation DNA-sequencing data, dual-luciferase reporter assays, and molecular modeling. These integrative analyses enabled us to define three clinical subtypes of BCL11B-related disorders. It is likely that gene-disruptive BCL11B variants and missense variants affecting zinc-binding cysteine and histidine residues cause mild to moderate neurodevelopmental delay with increased propensity for behavioral and dental anomalies, allergies and asthma, and reduced type 2 innate lymphoid cells. Missense variants within C2H2-ZnF DNA-contacting α helices cause highly variable clinical presentations ranging from multisystem anomalies with demise in the first years of life to late-onset, hyperkinetic movement disorder with poor fine motor skills. Those not in direct DNA contact cause a milder phenotype through reduced, target-specific transcriptional activity. However, missense variants affecting C2H2-ZnFs, DNA binding, and "specificity residues" impair BCL11B transcriptional activity in a target-specific, dominant-negative manner along with aberrant regulation of alternative DNA targets, resulting in more severe and unpredictable clinical outcomes. Taken together, we suggest that the phenotypic severity and variability is largely dependent on the DNA-binding affinity and specificity of altered BCL11B proteins.