The core of the eukaryotic helicase MCM is loaded as an inactive double hexamer (DH). How it is assembled into two active Cdc45-MCM-GINS (CMG) helicases remains elusive. Here, we report that at the onset of S phase, both Cdc45 and GINS are loaded as dimers onto MCM DH, resulting in formation of double CMG (d-CMG). As S phase proceeds, d-CMGs gradually mature into two single CMG-centered replisome progression complexes (RPCs). Mass spectra reveal that RPA and DNA Pol α/primase co-purify exclusively with RPCs, but not with d-CMGs. Consistently, d-CMGs are not able to catalyze either the unwinding or de novo DNA synthesis, while RPCs can do both. Using single-particle electron microscopy, we have obtained 2D class averages of d-CMGs. Compared to MCM DHs, they display heterogeneous, flexibly orientated and partially loosened conformations with changed interfaces. The dumbbell-shaped d-CMGs are mediated by Ctf4, while other types of d-CMGs are independent of Ctf4. These data suggest CMG dimers as bona fide intermediates during MCM maturation, providing an additional quality control for symmetric origin activation and bidirectional replication.