Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
JL
Ja Lee
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
206
h-index:
22
/
i10-index:
29
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

MSH2-MSH3 promotes DNA end resection during HR and blocks TMEJ through interaction with SMARCAD1 and EXO1

Jung Oh et al.Apr 23, 2021
SUMMARY DNA double strand break (DSB) repair by Homologous recombination (HR) is initiated by the end resection, a process during which 3’ ssDNA overhangs are generated by the nucleolytic degradation. The extent of DNA end resection determines the choice of the DSB repair pathway. The role of several proteins including nucleases for end resection has been studied in detail. However, it is still unclear how the initial, nicked DNA generated by MRE11-RAD50-NBS1 is recognized and how subsequent proteins including EXO1 are recruited to DSB sites to facilitate extensive end resection. We found that the MutSβ (MSH2-MSH3) mismatch repair (MMR) complex is recruited to DSB sites by recognizing the initial nicked DNA at DSB sites through the interaction with the chromatin remodeling protein SMARCAD1. MSH2-MSH3 at DSB sites helps to recruit EXO1 for long-range resection and enhances its enzymatic activity. MSH2-MSH3 furthermore inhibits the access of DNA polymerase Î¸ (POLQ), which promotes polymerase theta-mediated end-joining (TMEJ) of DSB. Collectively, our data show a direct role for MSH2-MSH3 in the initial stages of DSB repair by promoting end resection and influencing DSB repair pathway by favoring HR over TMEJ. Our findings extend the importance of MMR in DSB repair beyond established role in rejecting the invasion of sequences not perfectly homologous to template DNA during late-stage HR.
1
Citation2
0
Save
0

Abo1 ATPase facilitates the dissociation of FACT from chromatin.

Juwon Jang et al.Jun 17, 2024
The histone chaperone FACT is a heterodimeric complex consisting of Spt16 and Pob3, crucial for preserving nucleosome integrity during transcription and DNA replication. Loss of FACT leads to cryptic transcription and heterochromatin defects. FACT was shown to interact with Abo1, an AAA+ family histone chaperone involved in nucleosome dynamics. Depletion of Abo1 causes FACT to stall at transcription start sites (TSS) and mimics FACT mutants, indicating a functional association between Abo1 and FACT. However, the precise role of Abo1 in FACT function remains poorly understood. Here, we reveal that Abo1 directly interacts with FACT and facilates the dissociation of FACT from chromatin. Specifically, the N-terminal region of Abo1 utilizes its FACT interacting (FIN) helix to bind to the N-terminal domain (NTD) of Spt16. In addition, using single-molecule fluorescence imaging, we discovered that Abo1 facilitates the ATP-dependent dissociation of FACT from nucleosomes. Furthermore, we demonstrate that the interaction between Abo1 and FACT is essential for maintaining heterochromatin in fission yeast. In summary, our findings suggest that Abo1 regulates FACT turnover in an ATP-dependent manner, proposing a model of histone chaperone recycling driven by inter-chaperone interactions.