SS
Simone Sampaio
Author with expertise in Global Impact of Arboviral Diseases
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
2,260
h-index:
11
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: tip of the iceberg?

A. Melo et al.Jan 1, 2016
+3
R
G
A
Ultrasound in Obstetrics & GynecologyVolume 47, Issue 1 p. 6-7 Physician AlertFree Access Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: tip of the iceberg? A. S. Oliveira Melo, A. S. Oliveira Melo Instituto de Pesquisa Professor Joaquim Amorim Neto (IPESQ), Instituto de Saúde Elpidio de Almeida (ISEA), Campina Grande, BrazilSearch for more papers by this authorG. Malinger, Corresponding Author G. Malinger Division of Ultrasound in Obstetrics & Gynecology, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, IsraelCorrespondence. (e-mail: gmalinger@gmail.com)Search for more papers by this authorR. Ximenes, R. Ximenes Fetal Medicine Foundation Latinamerica – FMFLA, Centrus – Fetal Medicine, Campinas, BrazilSearch for more papers by this authorP. O. Szejnfeld, P. O. Szejnfeld FIDI - Fundação Instituto de Ensino e Pesquisa em Diagnóstico por Imagem, Departamento de Diagnóstico por Imagem -DDI- UNIFESP, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, BrazilSearch for more papers by this authorS. Alves Sampaio, S. Alves Sampaio Laboratório de Flavivírus, Instituto Oswaldo Cruz – FIOCRUZ, Rio de Janeiro, BrazilSearch for more papers by this authorA. M. Bispo de Filippis, A. M. Bispo de Filippis Laboratório de Flavivírus, Instituto Oswaldo Cruz – FIOCRUZ, Rio de Janeiro, BrazilSearch for more papers by this author A. S. Oliveira Melo, A. S. Oliveira Melo Instituto de Pesquisa Professor Joaquim Amorim Neto (IPESQ), Instituto de Saúde Elpidio de Almeida (ISEA), Campina Grande, BrazilSearch for more papers by this authorG. Malinger, Corresponding Author G. Malinger Division of Ultrasound in Obstetrics & Gynecology, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, IsraelCorrespondence. (e-mail: gmalinger@gmail.com)Search for more papers by this authorR. Ximenes, R. Ximenes Fetal Medicine Foundation Latinamerica – FMFLA, Centrus – Fetal Medicine, Campinas, BrazilSearch for more papers by this authorP. O. Szejnfeld, P. O. Szejnfeld FIDI - Fundação Instituto de Ensino e Pesquisa em Diagnóstico por Imagem, Departamento de Diagnóstico por Imagem -DDI- UNIFESP, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, BrazilSearch for more papers by this authorS. Alves Sampaio, S. Alves Sampaio Laboratório de Flavivírus, Instituto Oswaldo Cruz – FIOCRUZ, Rio de Janeiro, BrazilSearch for more papers by this authorA. M. Bispo de Filippis, A. M. Bispo de Filippis Laboratório de Flavivírus, Instituto Oswaldo Cruz – FIOCRUZ, Rio de Janeiro, BrazilSearch for more papers by this author First published: 05 January 2016 https://doi.org/10.1002/uog.15831Citations: 864AboutSectionsPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat An unexpected upsurge in diagnosis of fetal and pediatric microcephaly has been reported in the Brazilian press recently. Cases have been diagnosed in nine Brazilian states so far. By 28 November 2015, 646 cases had been reported in Pernambuco state alone. Although reports have circulated regarding the declaration of a state of national health emergency, there is no information on the imaging and clinical findings of affected cases. Authorities are considering different theories behind the ‘microcephaly outbreak’, including a possible association with the emergence of Zika virus disease within the region, the first case of which was detected in May 20151. Zika virus is a mosquito-borne disease closely related to yellow fever, dengue, West Nile and Japanese encephalitis viruses2. It was first identified in 1947 in the Zika Valley in Uganda and causes a mild disease with fever, erythema and arthralgia. Interestingly, vertical transmission to the fetus has not been reported previously, although two cases of perinatal transmission, occurring around the time of delivery and causing mild disease in the newborns, have been described3. We have examined recently two pregnant women from the state of Paraiba who were diagnosed with fetal microcephaly and were considered part of the ‘microcephaly cluster’ as both women suffered from symptoms related to Zika virus infection. Although both patients had negative blood results for Zika virus, amniocentesis and subsequent quantitative real-time polymerase chain reaction4, performed after ultrasound diagnosis of fetal microcephaly and analyzed at the Oswaldo Cruz Foundation, Rio de Janeiro, Brazil, was positive for Zika virus in both patients, most likely representing the first diagnoses of intrauterine transmission of the virus. The sequencing analysis identified in both cases a genotype of Asian origin. In Case 1, fetal ultrasound examination was performed at 30.1 weeks' gestation. Head circumference (HC) was 246 mm (2.6 SD below expected value) and weight was estimated as 1179 g (21st percentile). Abdominal circumference (AC), femur length (FL) and transcranial Doppler were normal for gestational age as was the width of the lateral ventricles. Anomalies were limited to the brain and included brain atrophy with coarse calcifications involving the white matter of the frontal lobes, including the caudate, lentostriatal vessels and cerebellum. Corpus callosal and vermian dysgenesis and enlarged cisterna magna were observed (Figure 1). Figure 1Open in figure viewerPowerPoint Case 1: (a) Transabdominal axial ultrasound image shows cerebral calcifications with failure of visualization of a normal vermis (large arrow). Calcifications are also present in the brain parenchyma (small arrow). (b) Transvaginal sagittal image shows dysgenesis of the corpus callosum (small arrow) and vermis (large arrow). (c) Coronal plane shows a wide interhemispheric fissure (large arrow) due to brain atrophy and bilateral parenchymatic coarse calcifications (small arrows). (d) Calcifications are visible in this more posterior coronal view and can be seen to involve the caudate (arrows). In Case 2, fetal ultrasound examination was performed at 29.2 weeks' gestation. HC was 229 mm (3.1 SD below expected value) and estimated fetal weight was 1018 g (19th percentile). AC was below the 3rd percentile but FL was normal. The cerebral hemispheres were markedly asymmetric with severe unilateral ventriculomegaly, displacement of the midline, thinning of the parenchyma on the dilated side, failure to visualize the corpus callosum and almost complete disappearance or failure to develop the thalami. The pons and brainstem were thin and continuous with a non-homogeneous small mass at the position of the basal ganglia. Brain calcifications were more subtle than in Case 1 and located around the lateral ventricles and fourth ventricle. Both eyes had cataracts and intraocular calcifications, and one eye was smaller than the other (Figure 2). Figure 2Open in figure viewerPowerPoint Case 2: (a) Anterior coronal view shows severe asymmetric ventriculomegaly with cystic formation (arrow). (b) Posterior horn of the lateral ventricle (LV) in coronal view is dilated. Note calcifications in the fourth ventricle (arrows). (c) The thalamus is absent (arrow) and the brainstem and pons are thin and difficult to visualize (sagittal view). (d) Axial view shows calcifications in both eyes (arrows). Note that the proximal eye is very small and lacks normal anatomic landmarks. In the meantime, in Paraiba state, six children diagnosed with Zika virus were born to mothers who were apparently symptomatic during pregnancy, all of them with neonatal HC below the 10th percentile. Fetal neurosonograms showed two cases with cerebellar involvement and three with brain calcifications. One had severe arthrogryposis. Intrauterine infections affecting the brain are relatively rare; cytomegalovirus (CMV), toxoplasmosis, herpes virus, syphilis and rubella are well known vectors of fetal disease. Among the Flaviviruses there have been only isolated reports linking West Nile encephalitis virus to fetal brain insults5. The presence of calcifications was suggestive of an intrauterine infection but severe damage of the cerebellum, brainstem and thalami is rarely associated with intrauterine infection. Both cases showed some similarities to CMV cases but with a more severe and destructive pattern and they lacked the nodules characteristic of toxoplasmosis. Interestingly, the reported case of fetal West Nile virus infection has similar characteristics5. It is difficult to explain why there have been no fetal cases of Zika virus infection reported until now but this may be due to the underreporting of cases, possible early acquisition of immunity in endemic areas or due to the rarity of the disease until now. As genomic changes in the virus have been reported6, the possibility of a new, more virulent, strain needs to be considered. Until more cases are diagnosed and histopathological proof is obtained, the possibility of other etiologies cannot be ruled out. As with other intrauterine infections, it is possible that the reported cases of microcephaly represent only the more severely affected children and that newborns with less severe disease, affecting not only the brain but also other organs, have not yet been diagnosed. If patients diagnosed in other states are found to be seropositive for Zika virus, this represents a severe health threat that needs to be controlled expeditiously. The Brazilian authorities reacted rapidly by declaring a state of national health emergency. As there is no known medical treatment for this disease, a serious attempt will be needed to eradicate the mosquito and prevent the spread of the disease to other Brazilian states and across the border7. References 1Campos GS, Bandeira AC, Sardi SI. Zika Virus Outbreak, Bahia, Brazil. Emerg Infect Dis 2015; 21: 1885– 1886. 2Ioos S, Mallet HP, Leparc Goffart I, Gauthier V, Cardoso T, Herida M. Current Zika virus epidemiology and recent epidemics. Medecine et maladies infectieuses 2014; 44: 302– 307. 3Besnard M, Lastere S, Teissier A, Cao-Lormeau V, Musso D. Evidence of perinatal transmission of Zika virus, French Polynesia, December 2013 and February 2014. Euro Surveill 2014; 19. 4Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, Stanfield SM, Duffy MR. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis 2008; 8: 1232– 1239. 5 Centers for Disease Control and Prevention (CDC). Intrauterine West Nile virus infection--New York, 2002. MMWR Morb Mortal Wkly Rep 2002; 51: 1135– 1136. 6Faye O, Freire CC, Iamarino A, Faye O, de Oliveira JV, Diallo M, Zanotto PM, Sall AA. Molecular evolution of Zika virus during its emergence in the 20(th) century. PLoS Negl Trop Dis 2014; 8: e2636. 7Goenaga S, Kenney JL, Duggal NK, Delorey M, Ebel GD, Zhang B, Levis SC, Enria DA, Brault AC. Potential for Co-Infection of a Mosquito-Specific Flavivirus, Nhumirim Virus, to Block West Nile Virus Transmission in Mosquitoes. Viruses 2015; 7: 5801– 5812. Citing Literature Volume47, Issue1January 2016Pages 6-7 FiguresReferencesRelatedInformation
0
Citation1,146
0
Save
0

Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study

Guilherme Calvet et al.Feb 19, 2016
+15
A
R
G

Summary

Background

 The incidence of microcephaly in Brazil in 2015 was 20 times higher than in previous years. Congenital microcephaly is associated with genetic factors and several causative agents. Epidemiological data suggest that microcephaly cases in Brazil might be associated with the introduction of Zika virus. We aimed to detect and sequence the Zika virus genome in amniotic fluid samples of two pregnant women in Brazil whose fetuses were diagnosed with microcephaly. 

Methods

 In this case study, amniotic fluid samples from two pregnant women from the state of Paraíba in Brazil whose fetuses had been diagnosed with microcephaly were obtained, on the recommendation of the Brazilian health authorities, by ultrasound-guided transabdominal amniocentesis at 28 weeks' gestation. The women had presented at 18 weeks' and 10 weeks' gestation, respectively, with clinical manifestations that could have been symptoms of Zika virus infection, including fever, myalgia, and rash. After the amniotic fluid samples were centrifuged, DNA and RNA were extracted from the purified virus particles before the viral genome was identified by quantitative reverse transcription PCR and viral metagenomic next-generation sequencing. Phylogenetic reconstruction and investigation of recombination events were done by comparing the Brazilian Zika virus genome with sequences from other Zika strains and from flaviviruses that occur in similar regions in Brazil. 

Findings

 We detected the Zika virus genome in the amniotic fluid of both pregnant women. The virus was not detected in their urine or serum. Tests for dengue virus, chikungunya virus, Toxoplasma gondii, rubella virus, cytomegalovirus, herpes simplex virus, HIV, Treponema pallidum, and parvovirus B19 were all negative. After sequencing of the complete genome of the Brazilian Zika virus isolated from patient 1, phylogenetic analyses showed that the virus shares 97–100% of its genomic identity with lineages isolated during an outbreak in French Polynesia in 2013, and that in both envelope and NS5 genomic regions, it clustered with sequences from North and South America, southeast Asia, and the Pacific. After assessing the possibility of recombination events between the Zika virus and other flaviviruses, we ruled out the hypothesis that the Brazilian Zika virus genome is a recombinant strain with other mosquito-borne flaviviruses. 

Interpretation

 These findings strengthen the putative association between Zika virus and cases of microcephaly in neonates in Brazil. Moreover, our results suggest that the virus can cross the placental barrier. As a result, Zika virus should be considered as a potential infectious agent for human fetuses. Pathogenesis studies that confirm the tropism of Zika virus for neuronal cells are warranted. 

Funding

 Consellho Nacional de Desenvolvimento e Pesquisa (CNPq), Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ).
0
Citation1,114
0
Save
0

Yellow fever virus spread in Rio de Janeiro and Espírito Santo, 2016-2019: Phylodynamic assessment to improve intervention strategies

Marta Giovanetti et al.Jul 23, 2019
+27
T
J
M
The recent re-emergence of yellow fever virus (YFV) in Brazil has raised serious concerns due to the virus' rapid dissemination in the southeastern region. To better understand YFV genetic diversity and dynamics during the recent outbreak in southeastern Brazil we generated 18 complete and near-complete genomes from the peak of the epidemic curve from non-human primates (NHPs) and human infected cases across Espírito Santo and Rio de Janeiro states. Genomic sequencing of 18 YFV genomes revealed the timing, source and likely routes of yellow fever virus transmission and dispersion during the one of the largest outbreaks ever registered in Brazil. We showed that the recent YFV epidemic spillover southwards several times from Minas Gerais to Espírito Santo and Rio de Janeiro states in 2016 to 2019. The quick production and analysis of data from portable sequencing could identify the corridor of spread of YFV.These findings reinforce that real-time and continued genomic surveillance strategies can assist in the monitoring and public health responses of arbovirus epidemics.