Abstract Activating PIK3CA mutations are known “drivers” of human cancer and developmental overgrowth syndromes. We recently demonstrated that the “hotspot” PIK3CA H1047R variant exerts unexpected allele dose-dependent effects on stemness in human pluripotent stem cells (hPSCs). In the present study, we combine high-depth transcriptomics, total proteomics and reverse-phase protein arrays to reveal potentially disease-related alterations in heterozygous cells, and to assess the contribution of activated TGFβ signalling to the stemness phenotype of PIK3CA H1047R homozygous cells. We demonstrate signalling rewiring as a function of oncogenic PI3K signalling dose, and provide experimental evidence that self-sustained stemness is causally related to enhanced autocrine NODAL/TGFβ signalling. A significant transcriptomic signature of TGFβ pathway activation in PIK3CA H1047R heterozygous was observed but was modest and was not associated with the stemness phenotype seen in homozygous mutants. Notably, the stemness gene expression in PIK3CA H1047R homozygous iPSCs was reversed by pharmacological inhibition of TGFβ signalling, but not by pharmacological PI3Kα pathway inhibition. Altogether, this provides the first in-depth analysis of PI3K signalling in human pluripotent stem cells and directly links dose-dependent PI3K activation to developmental NODAL/TGFβ signalling.