EV
Erina Vlashi
Author with expertise in Cancer Stem Cells and Tumor Metastasis
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
853
h-index:
25
/
i10-index:
33
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Metabolic state of glioma stem cells and nontumorigenic cells

Erina Vlashi et al.Sep 7, 2011
Gliomas contain a small number of treatment-resistant glioma stem cells (GSCs), and it is thought that tumor regrowth originates from GSCs, thus rendering GSCs an attractive target for novel treatment approaches. Cancer cells rely more on glycolysis than on oxidative phosphorylation for glucose metabolism, a phenomenon used in 2-[ 18 F]fluoro-2-deoxy- d -glucose positron emission tomography imaging of solid cancers, and targeting metabolic pathways in cancer cells has become a topic of considerable interest. However, if GSCs are indeed important for tumor control, knowledge of the metabolic state of GSCs is needed. We hypothesized that the metabolism of GSCs differs from that of their progeny. Using a unique imaging system for GSCs, we assessed the oxygen consumption rate, extracellular acidification rate, intracellular ATP levels, glucose uptake, lactate production, PKM1 and PKM2 expression, radiation sensitivity, and cell cycle duration of GSCs and their progeny in a panel of glioma cell lines. We found GSCs and progenitor cells to be less glycolytic than differentiated glioma cells. GSCs consumed less glucose and produced less lactate while maintaining higher ATP levels than their differentiated progeny. Compared with differentiated cells, GSCs were radioresistant, and this correlated with a higher mitochondrial reserve capacity. Glioma cells expressed both isoforms of pyruvate kinase, and inhibition of either glycolysis or oxidative phosphorylation had minimal effect on energy production in GSCs and progenitor cells. We conclude that GSCs rely mainly on oxidative phosphorylation. However, if challenged, they can use additional metabolic pathways. Therefore, targeting glycolysis in glioma may spare GSCs.
0
Citation475
0
Save
0

The Dopamine Receptor Antagonist TFP Prevents Phenotype Conversion and Improves Survival in Mouse Models of Glioblastoma

Kruttika Bhat et al.Dec 10, 2019
Glioblastoma (GBM) is the deadliest adult brain cancer and all patients ultimately succumb to the disease. Radiation therapy (RT) provides survival benefit of 6 months over surgery alone but these results have not improved in decades. We report that radiation induces a glioma-initiating cell phenotype and we have identified trifluoperazine (TFP) as a compound that interferes with this phenotype conversion. TFP caused loss of radiation-induced Nanog mRNA expression, activation of GSK3 with consecutive post-translational reduction in p-Akt, Sox2 and β-catenin protein levels. TFP did not alter the intrinsic radiation sensitivity of glioma-initiating cells (GICs). Continuous treatment with TFP and a single dose of radiation reduced the number of GICs in vivo and prolonged survival in syngeneic and patient-derived orthotopic xenograft (PDOX) mouse models of GBM. Our findings suggest that combination of a dopamine receptor antagonist with radiation enhances the efficacy of RT in GBM by preventing radiation-induced phenotype conversion of radiosensitive non-GICs into treatment resistant, induced GICs.Significance GBM is the most common and most deadly adult brain cancer. The current standard-of-care is surgery followed by RT and temozolomide, which results in a median survival time of only 15 months. The efficacy of chemotherapies and targeted therapies in GBM is very limited because most of these drugs do not pass the blood-brain-barrier. Ultimately, all patients succumb to the disease. Our study describes radiation-induced cellular plasticity as a novel resistance mechanism in GBM. We identified a dopamine receptor antagonist as a readily available, FDA-approved drug known to penetrate the blood-brain-barrier which prevents phenotype conversion of glioma cells into glioma-initiating cells and prologs survival in mouse models of GBM, thus suggesting that it will improve the efficacy of RT without increasing toxicity.
3

NADPH oxidase promotes glioblastoma radiation resistance in a PTEN-dependent manner

Kirsten Ludwig et al.Jun 17, 2022
ABSTRACT Aims The goal of this study was to determine whether NADPH oxidase (NOX)-produced reactive oxygen species enhances brain tumor growth of glioblastoma (GBM) under hypoxic conditions and during radiation treatment. Results Exogenous ROS promoted brain tumor growth in gliomasphere cultures that expressed functional PTEN, but not in tumors that were PTEN deficient. Hypoxia induced the production of endogenous cytoplasmic ROS and tumor cell growth via activation of NOX. NOX activation resulted in oxidation of PTEN and downstream Akt activation. Radiation also promoted ROS production via NOX which, in turn, resulted in cellular protection that could be abrogated by knockdown of the key NOX component, p22. Knockdown of p22 also inhibited tumor growth and enhanced the efficacy of radiation in PTEN-expressing GBM cells. Innovation While other studies have implicated NOX function in GBM models, these studies demonstrate NOX activation and function under physiological hypoxia and following radiation in GBM, two conditions that are seen in patients. NOX plays an important role in a PTEN-expressing GBM model system, but not in PTEN-non-functional systems and provide a potential, patient-specific therapeutic opportunity. Conclusions This study provides a strong basis for pursuing NOX inhibition in PTEN-expressing GBM cells as a possible adjunct to radiation therapy.