PS
Patrick Semal
Author with expertise in Genomic Analysis of Ancient DNA
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
2,655
h-index:
27
/
i10-index:
41
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus

Laura Weyrich et al.Mar 7, 2017
Analysis of calcified dental plaque (calculus) specimens from Neanderthals shows marked regional differences in diet and microbiota and evidence of self-medication in one individual, and identifies prevalent microorganisms and their divergence between Neanderthals and modern humans. The Neanderthal diet has been much debated, with evidence for a meat-rich diet conflicting with evidence from tooth wear that suggests more varied fare. Laura Weyrich and colleagues sequenced DNA from the dental calculus of five Neanderthal individuals from across Europe to provide a genetic reconstruction of their diet and health. They found that a Neanderthal from Spy in Belgium dined on rhinoceros and mutton, whereas another, from El Sidrón in Spain, ate pine nuts, moss and mushrooms. Their results also suggest that the Spanish Neanderthal had a dental abscess and a stomach bug that they were self-medicating with poplar, a natural painkiller, and the antibiotic-producing Penicillium bacteria. The team also uncovered the oldest microbial genome to date, that of Methanobrevibacter oralis at 48,000 years old. Recent genomic data have revealed multiple interactions between Neanderthals and modern humans1, but there is currently little genetic evidence regarding Neanderthal behaviour, diet, or disease. Here we describe the shotgun-sequencing of ancient DNA from five specimens of Neanderthal calcified dental plaque (calculus) and the characterization of regional differences in Neanderthal ecology. At Spy cave, Belgium, Neanderthal diet was heavily meat based and included woolly rhinoceros and wild sheep (mouflon), characteristic of a steppe environment. In contrast, no meat was detected in the diet of Neanderthals from El Sidrón cave, Spain, and dietary components of mushrooms, pine nuts, and moss reflected forest gathering2,3. Differences in diet were also linked to an overall shift in the oral bacterial community (microbiota) and suggested that meat consumption contributed to substantial variation within Neanderthal microbiota. Evidence for self-medication was detected in an El Sidrón Neanderthal with a dental abscess4 and a chronic gastrointestinal pathogen (Enterocytozoon bieneusi). Metagenomic data from this individual also contained a nearly complete genome of the archaeal commensal Methanobrevibacter oralis (10.2× depth of coverage)—the oldest draft microbial genome generated to date, at around 48,000 years old. DNA preserved within dental calculus represents a notable source of information about the behaviour and health of ancient hominin specimens, as well as a unique system that is useful for the study of long-term microbial evolution.
0
Citation462
0
Save
0

Pleistocene Mitochondrial Genomes Suggest a Single Major Dispersal of Non-Africans and a Late Glacial Population Turnover in Europe

Cosimo Posth et al.Feb 4, 2016
How modern humans dispersed into Eurasia and Australasia, including the number of separate expansions and their timings, is highly debated [1Scally A. Durbin R. Revising the human mutation rate: implications for understanding human evolution.Nat. Rev. Genet. 2012; 13: 745-753Crossref PubMed Scopus (343) Google Scholar, 2Groucutt H.S. Petraglia M.D. Bailey G. Scerri E.M. Parton A. Clark-Balzan L. Jennings R.P. Lewis L. Blinkhorn J. Drake N.A. et al.Rethinking the dispersal of Homo sapiens out of Africa.Evol. Anthropol. 2015; 24: 149-164Crossref PubMed Scopus (210) Google Scholar]. Two categories of models are proposed for the dispersal of non-Africans: (1) single dispersal, i.e., a single major diffusion of modern humans across Eurasia and Australasia [3Mellars P. Gori K.C. Carr M. Soares P.A. Richards M.B. Genetic and archaeological perspectives on the initial modern human colonization of southern Asia.Proc. Natl. Acad. Sci. USA. 2013; 110: 10699-10704Crossref PubMed Scopus (217) Google Scholar, 4Macaulay V. Hill C. Achilli A. Rengo C. Clarke D. Meehan W. Blackburn J. Semino O. Scozzari R. Cruciani F. et al.Single, rapid coastal settlement of Asia revealed by analysis of complete mitochondrial genomes.Science. 2005; 308: 1034-1036Crossref PubMed Scopus (566) Google Scholar, 5Oppenheimer S. A single southern exit of modern humans from Africa: before or after Toba?.Quat. Int. 2012; 258: 88-99Crossref Scopus (56) Google Scholar]; and (2) multiple dispersal, i.e., additional earlier population expansions that may have contributed to the genetic diversity of some present-day humans outside of Africa [6Lahr M.M. Foley R.A. Towards a theory of modern human origins: geography, demography, and diversity in recent human evolution.Am. J. Phys. Anthropol. 1998; : 137-176Crossref PubMed Google Scholar, 7Maca-Meyer N. González A.M. Larruga J.M. Flores C. Cabrera V.M. Major genomic mitochondrial lineages delineate early human expansions.BMC Genet. 2001; 2: 13Crossref PubMed Scopus (265) Google Scholar, 8Reyes-Centeno H. Ghirotto S. Détroit F. Grimaud-Hervé D. Barbujani G. Harvati K. Genomic and cranial phenotype data support multiple modern human dispersals from Africa and a southern route into Asia.Proc. Natl. Acad. Sci. USA. 2014; 111: 7248-7253Crossref PubMed Scopus (114) Google Scholar, 9Armitage S.J. Jasim S.A. Marks A.E. Parker A.G. Usik V.I. Uerpmann H.P. The southern route "out of Africa": evidence for an early expansion of modern humans into Arabia.Science. 2011; 331: 453-456Crossref PubMed Scopus (385) Google Scholar]. Many variants of these models focus largely on Asia and Australasia, neglecting human dispersal into Europe, thus explaining only a subset of the entire colonization process outside of Africa [3Mellars P. Gori K.C. Carr M. Soares P.A. Richards M.B. Genetic and archaeological perspectives on the initial modern human colonization of southern Asia.Proc. Natl. Acad. Sci. USA. 2013; 110: 10699-10704Crossref PubMed Scopus (217) Google Scholar, 4Macaulay V. Hill C. Achilli A. Rengo C. Clarke D. Meehan W. Blackburn J. Semino O. Scozzari R. Cruciani F. et al.Single, rapid coastal settlement of Asia revealed by analysis of complete mitochondrial genomes.Science. 2005; 308: 1034-1036Crossref PubMed Scopus (566) Google Scholar, 5Oppenheimer S. A single southern exit of modern humans from Africa: before or after Toba?.Quat. Int. 2012; 258: 88-99Crossref Scopus (56) Google Scholar, 8Reyes-Centeno H. Ghirotto S. Détroit F. Grimaud-Hervé D. Barbujani G. Harvati K. Genomic and cranial phenotype data support multiple modern human dispersals from Africa and a southern route into Asia.Proc. Natl. Acad. Sci. USA. 2014; 111: 7248-7253Crossref PubMed Scopus (114) Google Scholar, 9Armitage S.J. Jasim S.A. Marks A.E. Parker A.G. Usik V.I. Uerpmann H.P. The southern route "out of Africa": evidence for an early expansion of modern humans into Arabia.Science. 2011; 331: 453-456Crossref PubMed Scopus (385) Google Scholar]. The genetic diversity of the first modern humans who spread into Europe during the Late Pleistocene and the impact of subsequent climatic events on their demography are largely unknown. Here we analyze 55 complete human mitochondrial genomes (mtDNAs) of hunter-gatherers spanning ∼35,000 years of European prehistory. We unexpectedly find mtDNA lineage M in individuals prior to the Last Glacial Maximum (LGM). This lineage is absent in contemporary Europeans, although it is found at high frequency in modern Asians, Australasians, and Native Americans. Dating the most recent common ancestor of each of the modern non-African mtDNA clades reveals their single, late, and rapid dispersal less than 55,000 years ago. Demographic modeling not only indicates an LGM genetic bottleneck, but also provides surprising evidence of a major population turnover in Europe around 14,500 years ago during the Late Glacial, a period of climatic instability at the end of the Pleistocene.
0
Citation308
0
Save
0

Reconstructing the genetic history of late Neanderthals

Mateja Hajdinjak et al.Mar 1, 2018
Genetic similarity among late Neanderthals is predicted well by their geographical location, and although some of these Neanderthals were contemporaneous with early modern humans, their genomes show no evidence of recent gene flow from modern humans. Many questions remain about the relationship between populations of Neanderthals around the time of their final interactions with modern humans, and how this contributed to the evolution of modern humans. Janet Kelso, Svante Pääbo and colleagues sequenced the genomes of five Neanderthals that lived between 39,000 and 47,000 years ago, broadening the temporal and geographical range of available Neanderthal genomes. They analyse these genomes together with previously sequenced ancient genomes and find that relatedness among Neanderthals is related to geographic proximity. They find that the majority of gene flow into early modern humans originated from one or more Neanderthal populations that diverged from the late Neanderthals at least 70,000 years ago, but after their split from the Altai Neanderthal approximately 150,000 years ago. Although it has previously been shown that Neanderthals contributed DNA to modern humans1,2, not much is known about the genetic diversity of Neanderthals or the relationship between late Neanderthal populations at the time at which their last interactions with early modern humans occurred and before they eventually disappeared. Our ability to retrieve DNA from a larger number of Neanderthal individuals has been limited by poor preservation of endogenous DNA3 and contamination of Neanderthal skeletal remains by large amounts of microbial and present-day human DNA3,4,5. Here we use hypochlorite treatment6 of as little as 9 mg of bone or tooth powder to generate between 1- and 2.7-fold genomic coverage of five Neanderthals who lived around 39,000 to 47,000 years ago (that is, late Neanderthals), thereby doubling the number of Neanderthals for which genome sequences are available. Genetic similarity among late Neanderthals is well predicted by their geographical location, and comparison to the genome of an older Neanderthal from the Caucasus2,7 indicates that a population turnover is likely to have occurred, either in the Caucasus or throughout Europe, towards the end of Neanderthal history. We find that the bulk of Neanderthal gene flow into early modern humans originated from one or more source populations that diverged from the Neanderthals that were studied here at least 70,000 years ago, but after they split from a previously sequenced Neanderthal from Siberia2 around 150,000 years ago. Although four of the Neanderthals studied here post-date the putative arrival of early modern humans into Europe, we do not detect any recent gene flow from early modern humans in their ancestry.
0
Citation228
0
Save
0

Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers

Cosimo Posth et al.Mar 1, 2023
Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.
0
Citation73
1
Save
0

The evolutionary history of Neandertal and Denisovan Y chromosomes

Martin Petr et al.Mar 9, 2020
Ancient DNA has allowed the study of various aspects of human history in unprecedented detail. However, because the majority of archaic human specimens preserved well enough for genome sequencing have been female, comprehensive studies of Y chromosomes of Denisovans and Neandertals have not yet been possible. Here we present sequences of the first Denisovan Y chromosomes (Denisova 4 and Denisova 8), as well as the Y chromosomes of three late Neandertals (Spy 94a, Mezmaiskaya 2 and El Sidrón 1253). We find that the Denisovan Y chromosomes split around 700 thousand years ago (kya) from a lineage shared by Neandertal and modern human Y chromosomes, which diverged from each other around 370 kya. The phylogenetic relationships of archaic and modern human Y chromosomes therefore differ from population relationships inferred from their autosomal genomes, and mirror the relationships observed on the level of mitochondrial DNA. This provides strong evidence that gene flow from an early lineage related to modern humans resulted in the replacement of both the mitochondrial and Y chromosomal gene pools in late Neandertals. Although unlikely under neutrality, we show that this replacement is plausible if the low effective population size of Neandertals resulted in an increased genetic load in their Y chromosomes and mitochondrial DNA relative to modern humans.