PS
Philip Shaul
Author with expertise in Mechanisms of Estrogen Receptor Signaling
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
20
(65% Open Access)
Cited by:
7,887
h-index:
76
/
i10-index:
178
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

HDL Cholesterol Efflux Capacity and Incident Cardiovascular Events

Anand Rohatgi et al.Nov 18, 2014
It is unclear whether high-density lipoprotein (HDL) cholesterol concentration plays a causal role in atherosclerosis. A more important factor may be HDL cholesterol efflux capacity, the ability of HDL to accept cholesterol from macrophages, which is a key step in reverse cholesterol transport. We investigated the epidemiology of cholesterol efflux capacity and its association with incident atherosclerotic cardiovascular disease outcomes in a large, multiethnic population cohort.We measured HDL cholesterol level, HDL particle concentration, and cholesterol efflux capacity at baseline in 2924 adults free from cardiovascular disease who were participants in the Dallas Heart Study, a probability-based population sample. The primary end point was atherosclerotic cardiovascular disease, defined as a first nonfatal myocardial infarction, nonfatal stroke, or coronary revascularization or death from cardiovascular causes. The median follow-up period was 9.4 years.In contrast to HDL cholesterol level, which was associated with multiple traditional risk factors and metabolic variables, cholesterol efflux capacity had minimal association with these factors. Baseline HDL cholesterol level was not associated with cardiovascular events in an adjusted analysis (hazard ratio, 1.08; 95% confidence interval [CI], 0.59 to 1.99). In a fully adjusted model that included traditional risk factors, HDL cholesterol level, and HDL particle concentration, there was a 67% reduction in cardiovascular risk in the highest quartile of cholesterol efflux capacity versus the lowest quartile (hazard ratio, 0.33; 95% CI, 0.19 to 0.55). Adding cholesterol efflux capacity to traditional risk factors was associated with improvement in discrimination and reclassification indexes.Cholesterol efflux capacity, a new biomarker that characterizes a key step in reverse cholesterol transport, was inversely associated with the incidence of cardiovascular events in a population-based cohort. (Funded by the Donald W. Reynolds Foundation and others.).
0

Estrogen receptor α mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen

Zhong Chen et al.Feb 1, 1999
Estrogen is an important vasoprotective molecule that causes the rapid dilation of blood vessels by activating endothelial nitric oxide synthase (eNOS) through an unknown mechanism. In studies of intact ovine endothelial cells, 17β-estradiol (E2) caused acute (five-minute) activation of eNOS that was unaffected by actinomycin D but was fully inhibited by concomitant acute treatment with specific estrogen receptor (ER) antagonists. Overexpression of the known transcription factor ERα led to marked enhancement of the acute response to E2, and this was blocked by ER antagonists, was specific to E2, and required the ERα hormone-binding domain. In addition, the acute response of eNOS to E2 was reconstituted in COS-7 cells cotransfected with wild-type ERα and eNOS, but not by transfection with eNOS alone. Furthermore, the inhibition of tyrosine kinases or mitogen-activated protein (MAP) kinase kinase prevented the activation of eNOS by E2, and E2 caused rapid ER-dependent activation of MAP kinase. These findings demonstrate that the short-term effects of estrogen central to cardiovascular physiology are mediated by ERα functioning in a novel, nongenomic manner to activate eNOS via MAP kinase–dependent mechanisms.
0
Citation895
0
Save
0

Acylation Targets Endothelial Nitric-oxide Synthase to Plasmalemmal Caveolae

Philip Shaul et al.Mar 1, 1996
Endothelial nitric-oxide synthase (eNOS) generates the key signaling molecule nitric oxide in response to intralumenal hormonal and mechanical stimuli. We designed studies to determine whether eNOS is localized to plasmalemmal microdomains implicated in signal transduction called caveolae. Using immunoblot analysis, eNOS protein was detected in caveolar membrane fractions isolated from endothelial cell plasma membranes by a newly developed detergent-free method; eNOS protein was not found in noncaveolar plasma membrane. Similarly, NOS enzymatic activity was 9.4-fold enriched in caveolar membrane versus whole plasma membrane, whereas it was undetectable in noncaveolar plasma membrane. 51-86% of total NOS activity in postnuclear supernatant was recovered in plasma membrane, and 57-100% of activity in plasma membrane was recovered in caveolae. Immunoelectron microscopy showed that eNOS heavily decorated endothelial caveolae, whereas coated pits and smooth plasma membrane were devoid of gold particles. Furthermore, eNOS was targeted to caveolae in COS-7 cells transfected with wild-type eNOS cDNA. Studies with eNOS mutants revealed that both myristoylation and palmitoylation are required to target the enzyme to caveolae and that each acylation process enhances targeting by 10-fold. Thus, acylation targets eNOS to plasmalemmal caveolae. Localization to this microdomain is likely to optimize eNOS activation and the extracellular release of nitric oxide. Endothelial nitric-oxide synthase (eNOS) generates the key signaling molecule nitric oxide in response to intralumenal hormonal and mechanical stimuli. We designed studies to determine whether eNOS is localized to plasmalemmal microdomains implicated in signal transduction called caveolae. Using immunoblot analysis, eNOS protein was detected in caveolar membrane fractions isolated from endothelial cell plasma membranes by a newly developed detergent-free method; eNOS protein was not found in noncaveolar plasma membrane. Similarly, NOS enzymatic activity was 9.4-fold enriched in caveolar membrane versus whole plasma membrane, whereas it was undetectable in noncaveolar plasma membrane. 51-86% of total NOS activity in postnuclear supernatant was recovered in plasma membrane, and 57-100% of activity in plasma membrane was recovered in caveolae. Immunoelectron microscopy showed that eNOS heavily decorated endothelial caveolae, whereas coated pits and smooth plasma membrane were devoid of gold particles. Furthermore, eNOS was targeted to caveolae in COS-7 cells transfected with wild-type eNOS cDNA. Studies with eNOS mutants revealed that both myristoylation and palmitoylation are required to target the enzyme to caveolae and that each acylation process enhances targeting by 10-fold. Thus, acylation targets eNOS to plasmalemmal caveolae. Localization to this microdomain is likely to optimize eNOS activation and the extracellular release of nitric oxide.
0

Estrogen Receptor α and Endothelial Nitric Oxide Synthase Are Organized Into a Functional Signaling Module in Caveolae

Ken Chambliss et al.Nov 24, 2000
Abstract —Estrogen causes nitric oxide (NO)-dependent vasodilation due to estrogen receptor (ER) α-mediated, nongenomic activation of endothelial NO synthase (eNOS). The subcellular site of interaction between ERα and eNOS was determined in studies of isolated endothelial cell plasma membranes. Estradiol (E 2 , 10 –8 mol/L) caused an increase in eNOS activity in plasma membranes in the absence of added calcium, calmodulin, or eNOS cofactors, which was blocked by ICI 182,780 and ERα antibody. Immunoidentification studies detected the same 67-kDa protein in endothelial cell nucleus, cytosol, and plasma membrane. Plasma membranes from COS-7 cells expressing eNOS and ERα displayed ER-mediated eNOS stimulation, whereas membranes from cells expressing eNOS alone or ERα plus a myristoylation-deficient mutant eNOS were insensitive. Fractionation of endothelial cell plasma membranes revealed ERα protein in caveolae, and E 2 caused stimulation of eNOS in isolated caveolae that was ER-dependent; noncaveolae membranes were insensitive. Acetylcholine and bradykinin also activated eNOS in isolated caveolae. Furthermore, the effect of E 2 on eNOS in caveolae was prevented by calcium chelation. Thus, a subpopulation of ERα is localized to endothelial cell caveolae where they are coupled to eNOS in a functional signaling module that may regulate the local calcium environment. The full text of this article is available at http://www.circresaha.org.
0
Citation404
0
Save
0

High Density Lipoprotein-induced Endothelial Nitric-oxide Synthase Activation Is Mediated by Akt and MAP Kinases

Chieko Mineo et al.Mar 1, 2003
High density lipoprotein (HDL) activates endothelial nitric-oxide synthase (eNOS), leading to increased production of the antiatherogenic molecule NO. A variety of stimuli regulate eNOS activity through signaling pathways involving Akt kinase and/or mitogen-activated protein (MAP) kinase. In the present study, we investigated the role of kinase cascades in HDL-induced eNOS stimulation in cultured endothelial cells and COS M6 cells transfected with eNOS and the HDL receptor, scavenger receptor B-I. HDL (10-50 microg/ml, 20 min) caused eNOS phosphorylation at Ser-1179, and dominant negative Akt inhibited both HDL-mediated phosphorylation and activation of the enzyme. Phosphoinositide 3-kinase (PI3 kinase) inhibition or dominant negative PI3 kinase also blocked the phosphorylation and activation of eNOS by HDL. Studies with genistein and PP2 showed that the nonreceptor tyrosine kinase, Src, is an upstream stimulator of the PI3 kinase-Akt pathway in this paradigm. In addition, HDL activated MAP kinase through PI3 kinase, and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibition fully attenuated eNOS stimulation by HDL without affecting Akt or eNOS Ser-1179 phosphorylation. Conversely, dominant negative Akt did not alter HDL-induced MAP kinase activation. These results indicate that HDL stimulates eNOS through common upstream, Src-mediated signaling, which leads to parallel activation of Akt and MAP kinases and their resultant independent modulation of the enzyme.
Load More