KK
Konstantina Karathanou
Author with expertise in Protein Structure Prediction and Analysis
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
725
h-index:
11
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions

Ioannis Vlachos et al.Nov 21, 2014
microRNAs (miRNAs) are short non-coding RNA species, which act as potent gene expression regulators. Accurate identification of miRNA targets is crucial to understanding their function. Currently, hundreds of thousands of miRNA:gene interactions have been experimentally identified. However, this wealth of information is fragmented and hidden in thousands of manuscripts and raw next-generation sequencing data sets. DIANA-TarBase was initially released in 2006 and it was the first database aiming to catalog published experimentally validated miRNA:gene interactions. DIANA-TarBase v7.0 (http://www.microrna.gr/tarbase) aims to provide for the first time hundreds of thousands of high-quality manually curated experimentally validated miRNA:gene interactions, enhanced with detailed meta-data. DIANA-TarBase v7.0 enables users to easily identify positive or negative experimental results, the utilized experimental methodology, experimental conditions including cell/tissue type and treatment. The new interface provides also advanced information ranging from the binding site location, as identified experimentally as well as in silico, to the primer sequences used for cloning experiments. More than half a million miRNA:gene interactions have been curated from published experiments on 356 different cell types from 24 species, corresponding to 9- to 250-fold more entries than any other relevant database. DIANA-TarBase v7.0 is freely available.
0
Citation722
0
Save
9

A graph-based approach identifies dynamic H-bond communication networks in spike protein S of SARS-CoV-2

Konstantina Karathanou et al.Jun 23, 2020
Abstract Corona virus spike protein S is a large homo-trimeric protein embedded in the membrane of the virion particle. Protein S binds to angiotensin-converting-enzyme 2, ACE2, of the host cell, followed by proteolysis of the spike protein, drastic protein conformational change with exposure of the fusion peptide of the virus, and entry of the virion into the host cell. The structural elements that govern conformational plasticity of the spike protein are largely unknown. Here, we present a methodology that relies upon graph and centrality analyses, augmented by bioinformatics, to identify and characterize large H-bond clusters in protein structures. We apply this methodology to protein S ectodomain and find that, in the closed conformation, the three protomers of protein S bring the same contribution to an extensive central network of H-bonds, has a relatively large H-bond cluster at the receptor binding domain, and a cluster near a protease cleavage site. Markedly different H-bonding at these three clusters in open and pre-fusion conformations suggest dynamic H-bond clusters could facilitate structural plasticity and selection of a protein S protomer for binding to the host receptor, and proteolytic cleavage. From analyses of spike protein sequences we identify patches of histidine and carboxylate groups that could be involved in transient proton binding.
9
Citation1
0
Save
1

Preproteins couple the intrinsic dynamics of SecA to its ATPase cycle to translocate via a catch and release mechanism

Srinath Krishnamurthy et al.Aug 31, 2021
Summary Protein machines undergo conformational motions to interact with and manipulate polymeric substrates. The Sec translocase promiscuously recognizes, becomes activated and secretes >500 non-folded preprotein clients across bacterial cytoplasmic membranes. Here, we reveal that the intrinsic dynamics of the translocase ATPase, SecA, and of preproteins combine to achieve translocation. SecA possesses an intrinsically dynamic preprotein clamp attached to an equally dynamic ATPase motor. Alternating motor conformations are finely controlled by the γ-phosphate of ATP, while ADP causes motor stalling, independently of clamp motions. Functional preproteins physically bridge these independent dynamics. Their signal peptide promotes clamp closing; their mature domain overcomes the rate limiting ADP release. While repeated ATP cycles shift the motor between unique states, multiple conformationally frustrated prongs in the clamp repeatedly ‘catch and release’ trapped preprotein segments until translocation completion. This universal mechanism allows any preprotein to promiscuously recognize the translocase, usurp its intrinsic dynamics and become secreted.
1
Citation1
0
Save
2

A nexus of intrinsic dynamics underlies translocase priming

Srinath Krishnamurthy et al.Jan 19, 2021
Summary The cytoplasmic ATPase SecA and the membrane-embedded SecYEG channel assemble to form the functional Sec translocase. How this interaction primes and catalytically activates the translocase remains unclear. We now show that priming exploits a sophisticated nexus of intrinsic dynamics in SecA. Using atomistic simulations, single molecule FRET and hydrogen/deuterium exchange mass spectrometry we reveal multiple distributed dynamic islands that cross-talk with domain and quaternary motions. These dynamic elements are highly conserved and essential for function. Central to the nexus is a slender Stem through which, motions in the helicase ATPase domain of SecA biases how the preprotein binding domain rotates between open-closed clamping states. Multi-tier dynamics are enabled by an H-bonded framework covering most of the SecA structure and allowing conformational alterations with minimal energy inputs. As a result, dimerization, the channel and nucleotides select pre-existing conformations, and alter local dynamics to restrict or promote catalytic activity and clamp motions. These events prime the translocase for high affinity reception of non-folded preprotein clients. Such dynamics nexuses are likely universal and essential in multi-liganded protein machines.
2
Citation1
0
Save