YH
Yuehua Hu
Author with expertise in Estimation of Forest Biomass and Carbon Stocks
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(29% Open Access)
Cited by:
1,062
h-index:
73
/
i10-index:
324
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Global importance of large‐diameter trees

James Lutz et al.May 8, 2018
Abstract Aim To examine the contribution of large‐diameter trees to biomass, stand structure, and species richness across forest biomes. Location Global. Time period Early 21st century. Major taxa studied Woody plants. Methods We examined the contribution of large trees to forest density, richness and biomass using a global network of 48 large (from 2 to 60 ha) forest plots representing 5,601,473 stems across 9,298 species and 210 plant families. This contribution was assessed using three metrics: the largest 1% of trees ≥ 1 cm diameter at breast height (DBH), all trees ≥ 60 cm DBH, and those rank‐ordered largest trees that cumulatively comprise 50% of forest biomass. Results Averaged across these 48 forest plots, the largest 1% of trees ≥ 1 cm DBH comprised 50% of aboveground live biomass, with hectare‐scale standard deviation of 26%. Trees ≥ 60 cm DBH comprised 41% of aboveground live tree biomass. The size of the largest trees correlated with total forest biomass ( r 2 = .62, p < .001). Large‐diameter trees in high biomass forests represented far fewer species relative to overall forest richness ( r 2 = .45, p < .001). Forests with more diverse large‐diameter tree communities were comprised of smaller trees ( r 2 = .33, p < .001). Lower large‐diameter richness was associated with large‐diameter trees being individuals of more common species ( r 2 = .17, p = .002). The concentration of biomass in the largest 1% of trees declined with increasing absolute latitude ( r 2 = .46, p < .001), as did forest density ( r 2 = .31, p < .001). Forest structural complexity increased with increasing absolute latitude ( r 2 = .26, p < .001). Main conclusions Because large‐diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling. We recommend managing forests for conservation of existing large‐diameter trees or those that can soon reach large diameters as a simple way to conserve and potentially enhance ecosystem services.
0
Paper
Citation397
0
Save
5

Efficient and stable metabarcoding sequencing from DNBSEQ-G400 sequencer examined by large fungal community analysis

Xiaohuan Sun et al.Jul 3, 2020
ABSTRACT Metabarcoding has become the de facto method for characterizing the structure of microbial communities in complex environmental samples. To determine how sequencing platform may influence microbial community characterization, we present a large-scale comparison of two sequencing platforms; Illumina MiSeq and a new platform DNBSEQ-G400 developed by MGI Tech. The accuracy of DNBSEQ-G400 on bacterial and fungal mock samples and compared sequencing consistency and precision between DNBSEQ-G400 and MiSeq platforms by sequencing the fungal ITS2 region from 1144 soil samples with 3 technical replicates. The DNBSEQ-G400 showed a high accuracy in reproducing mock communities containing different proportions of bacteria and fungi, respectively. The taxonomic profiles of the 1144 soil samples generated by the two DNBSEQ-G400 modes closely resembled each other and were highly correlated with those generated by the MiSeq platform. Analyses of technical replicates demonstrated a run bias against certain taxa on the MiSeq but not DNBSEQ-G400 platform. Based on lower cost, greater capacity, and less bias, we conclude that DNBSEQ-G400 is an optimal platform for short-term metabarcoding of microbial communities. IMPORTANCE Experimental steps that generate sequencing bias during amplicon sequencing have been intensively evaluated, including the choice of primer pair, polymerase, PCR cycle and technical replication. However, few studies have assessed the accuracy and precision of different sequencing platforms. Here, we compared the performance of newly released DNBSEQ-G400 sequencer with that of the commonly used Illumina MiSeq platform by leveraging amplicon sequencing of a large number of soil samples. Significant sequencing bias among major fungal genera was found in parallel MiSeq runs, which can be easily neglected without the use of sequencing controls. We emphasize the importance of technical controls in large-scale sequencing efforts and provide DNBSEQ-G400 as an alternative with increased sequencing capacity and more stable reproducibility for amplicon sequencing.
5
Citation1
0
Save
0

Phylogenetic Effect on Tree Radial Growth Depends on Drought and Tree Sizes

Ewuketu Linger et al.Aug 1, 2024
Abstract Tree radial growth is one of the most direct measures of tree performance and is also sensitive to climate. Growth performance is the consequence of the interplay between ecological and evolutionary processes. However, the effect of the evolutionary relatedness among species (i.e., phylogeny) on tree radial growth, especially under stressful conditions, remains largely unknown. Furthermore, there is still no ecological evidence for the influence of phylogeny on tree growth across different tree attributes (i.e., tree diameter variation and tree canopy height) and topographic habitat types. We used Blomberg's K to quantify the tree growth phylogenetic signal (TGPS) using two long‐term dendrometer data sets: one a continuous census of 225 tree species at 3‐month intervals in a tropical forest in southwest China from 2009 to 2017; the other, 12 tree species measured at 6‐month intervals in a temperate forest in Washington State, USA from 2013 to 2019. We found that TGPS values were higher in the temperate forest than in the tropical forest. Precipitation, tree diameter, canopy strata, and habitat types all influenced TGPS values. TGPS values were significantly ( p < 0.05) and negatively related to precipitation in Xishuangbanna, and the three of four tree diameter classes in the temperate forest, respectively. Stressful growing conditions arose from either based on low precipitation or among large‐diameter trees competing with each other in the upper canopy led to phylogenetic conservatism in trees' radial growth performance. We conclude that phylogeny is pivotal to understanding the growth response differences among species and their responses to climate variability.