SS
Scott Swanson
Author with expertise in Induction and Differentiation of Pluripotent Stem Cells
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
1,404
h-index:
26
/
i10-index:
36
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Interspecies Chimeric Conditions Affect the Developmental Rate of Human Pluripotent Stem Cells

Jared Brown et al.Sep 12, 2020
ABSTRACT Human pluripotent stem cells hold significant promise for regenerative medicine. However, long differentiation protocols and immature characteristics of stem cell-derived cell types remain challenges to the development of many therapeutic applications. In contrast to the slow differentiation of human stem cells in vitro that mirrors a nine-month gestation period, mouse stem cells develop according to a much faster three-week gestation timeline. Here, we tested if co-differentiation with mouse pluripotent stem cells could accelerate the differentiation speed of human embryonic stem cells. Following a six-week RNA-sequencing time course of neural differentiation, we identified 929 human genes that were upregulated earlier and 535 genes that exhibited earlier peaked expression profiles in chimeric cell cultures than in human cell cultures alone. Genes with accelerated upregulation were significantly enriched in Gene Ontology terms associated with neurogenesis, neuron differentiation and maturation, and synapse signaling. Moreover, chimeric mixed samples correlated with in utero human embryonic samples earlier than human cells alone, and acceleration was dose-dependent on human-mouse co-culture ratios. Differences in the timing and expression levels of genes corresponding to neuron cell types and brain region identity under chimeric conditions were also observed. The altered developmental rates and lineage outcomes described in this report have implications for accelerating human stem cell differentiation and the use of interspecies chimeric embryos in developing human organs for transplantation. Author Summary Human pluripotent stem cells often require long in vitro protocols to form mature cell types of clinical relevance for potential regenerative therapies, a ramification of a nine-month developmental clock in utero that also runs ex utero . What controls species-specific developmental time and whether the timer is amenable to acceleration is unknown. Further, interspecies chimeric embryos are increasingly being created to study early human development or explore the potential growth of human organs for transplantation. How the conflicting developmental speeds of cells from different species co-differentiating together affect each other is not understood. Here, using genome-wide transcriptional analysis of RNA-sequencing time courses, we show that 1) co-differentiating human embryonic stem cells intermixed with mouse stem cells accelerated elements of human developmental programs, 2) the acceleration was dose-dependent on the proportion of mouse cells, and 3) human cells in chimeric samples correlated to in utero samples earlier than human only samples. Our results provide evidence that some components of species-specific developmental clocks may be susceptible to acceleration.
0
Citation3
0
Save
4

Rapid changes in chromatin structure during dedifferentiation of primary hepatocytes in vitro

Morten Seirup et al.Sep 22, 2020
Abstract Primary hepatocytes are widely used in the pharmaceutical industry to screen drug candidates for hepatotoxicity, but isolated hepatocytes quickly dedifferentiate and lose their mature metabolic function in culture. Attempts have been made to better recapitulate the in vivo liver environment in culture, but the full spectrum of signals required to maintain hepatocyte function in vitro remains elusive. Here we studied the dedifferentiation process in detail through RNA-sequencing of hepatocytes cultured over eight days. We identified three distinct phases of dedifferentiation. An early phase, where mature hepatocyte genes are rapidly downregulated in a matter of hours. A middle phase, where fetal genes are activated, leading to hepatocytes with a fetal phenotype. A late phase, where initially rare contaminating non-parenchymal cells over-grow the culture as the hepatocytes gradually die. Using genetically tagged hepatocytes, we demonstrate that the cells reactivating fetal marker alpha-fetoprotein arise from cells previously expressing the mature hepatocyte marker albumin, and not from albumin negative precursor cells, proving that hepatocytes undergo true dedifferentiation. To better understand the signaling events that result in the rapid down-regulation of mature hepatocyte genes, we examined changes in chromatin accessibility of hepatocytes during the first 24h of culture using ATAC-seq. We find that drastic and rapid changes in chromatin accessibility occurs immediately upon start of culture. Using binding motif analysis of the areas of open chromatin sharing similar temporal profiles, we identify several candidate transcription factors potentially involved in the dedifferentiation of primary hepatocytes in culture.
4
Citation1
0
Save