AK
Anirudh Krishnakumar
Author with expertise in Digital Mental Health Interventions and Efficacy
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
1
h-index:
4
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Remote Digital Psychiatry: MindLogger for Mobile Mental Health Assessment and Therapy

Arno Klein et al.Nov 17, 2020
+17
J
K
A
Abstract Background Universal access to assessment and treatment of mental health and learning disorders remains a significant and unmet need. There is a vast number of people without access to care because of economic, geographic, and cultural barriers as well as limited availability of clinical experts who could help advance our understanding of mental health. Objective To create an open, configurable software platform to build clinical measures, mobile assessments, tasks, and interventions without programming expertise. Specifically, our primary requirements include: an administrator interface for creating and scheduling recurring and customized questionnaires where end users receive and respond to scheduled notifications via an iOS or Android app on a mobile device. Such a platform would help relieve overwhelmed health systems, and empower remote and disadvantaged subgroups in need of accurate and effective information, assessment, and care. This platform has potential to advance scientific research by supporting the collection of data with instruments tailored to specific scientific questions from large, distributed, and diverse populations. Methods We conducted a search for tools that satisfy the above requirements. We designed and developed a new software platform called “MindLogger” that exceeds the above requirements. To demonstrate the tool’s configurability, we built multiple “applets” (collections of activities) within the MindLogger mobile application and deployed several, including a comprehensive set of assessments underway in a large-scale, longitudinal, mental health study. Results Of the hundreds of products we researched, we found 10 that met our primary requirements above with 4 that support end-to-end encryption, 2 that enable restricted access to individual users’ data, 1 that provides open source software, and none that satisfy all three. We compared features related to information presentation and data capture capabilities, privacy and security, and access to the product, code, and data. We successfully built MindLogger mobile and web applications, as well as web browser-based tools for building and editing new applets and for administering them to end users. MindLogger has end-to-end encryption, enables restricted access, is open source, and supports a variety of data collection features. One applet is currently collecting data from children and adolescents in our mental health study, and other applets are in different stages of testing and deployment for use in clinical and research settings. Conclusions We have demonstrated the flexibility and applicability of the MindLogger platform through its deployment in a large-scale, longitudinal, mobile mental health study, and by building a variety of other mental health-related applets. With this release, we encourage a broad range of users to apply the MindLogger platform to create and test applets to advance health care and scientific research. We hope that increasing availability of applets designed to assess and administer interventions will facilitate access to health care in the general population.
0
Paper
Citation1
0
Save
0

Thermal sensors improve wrist-worn position tracking

Jake Son et al.Feb 21, 2019
+4
C
J
J
Wearable devices provide a means of tracking hand position in relation to the head, but have mostly relied on wrist-worn inertial measurement unit sensors and proximity sensors, which are inadequate for identifying specific locations. This limits their utility for accurate and precise monitoring of behaviors or providing feedback to guide behaviors. A potential clinical application is monitoring body-focused repetitive behaviors (BFRBs), recurrent, injurious behaviors directed toward the body, such as nail biting and hair pulling, that are often misdiagnosed and undertreated. Here, we demonstrate that including thermal sensors achieves higher accuracy in position tracking when compared against inertial measurement unit and proximity sensor data alone. Our Tingle device distinguished between behaviors from six locations on the head across 39 adult participants, with high AUROC values (best was back of the head: median (1.0), median absolute deviation (0.0); worst was on the cheek: median (0.93), median absolute deviation (0.09)). This study presents preliminary evidence of the advantage of including thermal sensors for position tracking and the Tingle wearable device's potential use in a wide variety of settings, including BFRB diagnosis and management.
0

Assessment of the impact of shared data on the scientific literature

Michael Milham et al.Sep 4, 2017
+11
M
R
M
Data sharing is increasingly recommended as a means of accelerating science by facilitating collaboration, transparency, and reproducibility. While few oppose data sharing philosophically, a range of barriers deter most researchers from implementing it in practice (e.g., workforce and infrastructural demands, sociocultural and privacy concerns, lack of standardization). To justify the significant effort required for sharing data (e.g., organization, curation, distribution), funding agencies, institutions, and investigators need clear evidence of benefit. Here, using the International Neuroimaging Data-sharing Initiative, we present a brain imaging case study that provides direct evidence of the impact of open sharing on data use and resulting publications over a seven-year period (2010-2017). We dispel the myth that scientific findings using shared data cannot be published in high-impact journals and demonstrate rapid growth in the publication of such journal articles, scholarly theses, and conference proceedings. In contrast to commonly used 'pay to play' models, we demonstrate that openly shared data can increase the scale (i.e., sample size) of scientific studies conducted by data contributors, and can recruit scientists from a broader range of disciplines. These findings suggest the transformative power of data sharing for accelerating science and underscore the need for the scientific ecosystem to embrace the challenge of implementing data sharing universally.