KS
Kimio Satomura
Author with expertise in Multipotent Mesenchymal Stem Cells
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
3,074
h-index:
36
/
i10-index:
79
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Single‐Colony Derived Strains of Human Marrow Stromal Fibroblasts Form Bone After Transplantation In Vivo

Sergei Kuznetsov et al.Sep 1, 1997
Populations of marrow stromal fibroblasts (MSFs) can differentiate into functional osteoblasts and form bone in vivo. It is not known, however, what proportion of MSF precursor cells, colony forming units-fibroblast (CFU-Fs), have osteogenic potential. In the present study, analysis of bone formation in vivo by single-colony derived strains of human marrow stromal fibroblasts (HMSFs) has been performed for the first time. Each strain originated from an individual CFU-F and underwent four passages in vitro prior to subcutaneous implantation into immunodeficient mice within vehicles containing hydroxyapatite-tricalcium phosphate ceramic. Multicolony derived HMSF strains were also transplanted to serve as positive controls. After 8 weeks, abundant bone formation was found in the transplants of all multicolony derived HMSF strains, whereas 20 out of 34 (58.8%) single-colony derived strains from four donors formed bone. Immunostaining with antibody directed against human osteonectin and in situ hybridization for human-specific alu sequences demonstrated that cells forming new bone were of human origin and were vital for at least 45 weeks post-transplantation. Both the incidence of bone-forming colonies and the extent of bone formation by single-colony derived HMSF strains were increased by cultivation with dexamethasone and ascorbic acid phosphate. Other factors, including type of transplantation vehicle, morphology, size, and structure of the original HMSF colonies showed no obvious correlation with the incidence or extent of bone formation. Hematopoietic tissue within the newly formed bone was developed in the transplants exhibiting exuberant bone formation. These results provide evidence that individual human CFU-Fs have osteogenic potential and yet differ from each other with respect to their osteogenic capacity.
0
Citation718
0
Save
0

BONE FORMATION IN VIVO: COMPARISON OF OSTEOGENESIS BY TRANSPLANTED MOUSE AND HUMAN MARROW STROMAL FIBROBLASTS

Paul Krebsbach et al.Apr 1, 1997
Background. Marrow stromal fibroblasts (MSFs) are known to contain bone precursor cells. However, the osteogenic potential of human MSFs has been poorly characterized. The aim of this study was to compare the osteogenic capacity of mouse and human MSFs after implantation in vivo. Methods. After in vitro expansion, MSFs were loaded into a number of different vehicles and transplanted subcutaneously into immunodeficient mice. Results. Mouse MSFs transplanted within gelatin, polyvinyl sponges, and collagen matrices all formed a capsule of cortical-like bone surrounding a cavity with active hematopoiesis. In transplants of MSFs from transgenic mice harboring type I procollagen-chloramphenicol acetyltransferase constructs, chloramphenicol acetyltransferase activity was maintained for up to 14 weeks, indicating prolonged bone formation by transplanted MSFs. New bone formation by human MSFs was more dependent on both the in vitro expansion conditions and transplantation vehicles. Within gelatin, woven bone was observed sporadically and only after culture in the presence of dexamethasone and L-ascorbic acid phosphate magnesium salt n-hydrate. Consistent bone formation by human MSFs was achieved only within vehicles containing hydroxyapatite/tricalcium phosphate ceramics (HA/TCP) in the form of blocks, powder, and HA/TCP powder-type I bovine fibrillar collagen strips, and bone was maintained for at least 19 weeks. Cells of the new bone were positive for human osteonectin showing their donor origin. HA/TCP powder, the HA/TCP powder-type I bovine fibrillar collagen strips, and HA/TCP powder held together with fibrin were easier to load and supported more extensive osteogenesis than HA/TCP blocks and thus may be more applicable for therapeutic use. Conclusions. In this article, we describe the differences in the requirements for mouse and human MSFs to form bone, and report the development of a methodology for the consistent in vivo generation of extensive bone from human MSFs.
0
Citation485
0
Save