NG
Nick Garelis
Author with expertise in Innate Immunity to Viral Infection
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
290
h-index:
2
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

SLC19A1 is a cyclic dinucleotide transporter

Rutger Luteijn et al.Feb 4, 2019
The accumulation of DNA in the cytosol serves as a key immunostimulatory signal associated with infections, cancer and genomic damage. Cytosolic DNA triggers immune responses by activating the cGAS/STING pathway. The binding of DNA to the cytosolic enzyme cGAMP synthase (cGAS), activates its enzymatic activity, leading to the synthesis of a second messenger, cyclic[G(2',5')pA(3'5')] (2'3'-cGAMP). 2'3'-cGAMP, a cyclic dinucleotide (CDN), activates the protein 'stimulator of interferon genes' (STING), which in turn activates the transcription factors IRF3 and NF-κB promoting the transcription of genes encoding type I interferons and other cytokines and mediators that stimulate a broader immune response. Exogenous 2'3'-cGAMP and other CDNs, including CDNs produced by bacteria and synthetic CDNs used in cancer immunotherapy, must traverse the cell membrane to activate STING in target cells. How these charged CDNs pass through the lipid bilayer is unknown. Here we used a genome-wide CRISPR interference screen to identify the reduced folate carrier SLC19A1 as the major CDN transporter for uptake of synthetic and naturally occurring CDNs. CDN uptake and functional responses are inhibited by depleting SLC19A1 from cells and enhanced by overexpressing SLC19A1. In both cell lines and primary cells ex vivo, CDN uptake is inhibited competitively by folate and blocked by the SLC19A1 inhibitor sulfasalazine, a medication approved for the treatment of inflammatory diseases. The identification of SLC19A1 as the major transporter of CDNs into cells has far reaching implications for the immunotherapeutic treatment of cancer, transport of 2'3'-cGAMP from tumor cells to other immune cells to trigger the anti-tumor immune response, host responsiveness to CDN-producing pathogenic microorganisms, and potentially in certain inflammatory diseases.
0

Global proteomic profiling of primary macrophages during M. tuberculosis infection identifies TAX1BP1 as a mediator of autophagy targeting

Jonathan Budzik et al.Jan 31, 2019
Macrophages are highly plastic cells that adopt diverse functional capabilities and play critical roles in immunity, cancer, and tissue homeostasis, but how these different cell fates and activities are triggered in response to their environmental cues is not well understood. We used new proteomic tools to identify protein post-translational modifications (PTMs) that control anti-bacterial responses of macrophages. Here, we report an unbiased and global analysis of the changes in host protein abundance, phosphorylation, and ubiquitylation, during the first 24-hours of Mycobacterium tuberculosis (Mtb) infection of primary macrophages. We discovered 1379 proteins with changes in their phosphorylation state and 591 proteins with changes in their ubiquitylation in response to Mtb infection. We identified pathways regulated by phosphorylation and ubiquitylation that weren't reflected by changes in protein abundance, indicating that the activity of these pathways was regulated. These include pathways known to be regulated by ubiquitylation and phosphorylation (e.g. autophagy) as well as pathways that were not known to be regulated during Mtb infection (e.g. nucleocytoplasmic transport and mRNA metabolism). We identified an enrichment in phosphorylation of autophagy receptors (TAX1BP1, p62, optineurin, BNIP3L), several of which were not previously implicated in the host response to Mtb infection. We found that p62 deficiency blocks ubiquitylation and TAX1BP1 deficiency enhances ubiquitylation, suggesting p62 ubiquitylation acts as an amplification loop by promoting downstream adaptor recruitment and serves as a platform for recruitment of ubiquitin. Our results show that TAX1BP1 mediates clearance of ubiquitylated Mtb and targets the bacteria to LC3-positive phagophores. Taken together, our proteomic profiling is likely a valuable resource for initiating mechanistic studies of macrophage biology.