MM
María Muñoz
Author with expertise in Molecular Mechanisms of Aging and Longevity
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
4
(25% Open Access)
Cited by:
0
h-index:
15
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Steroid hormones sulfatase inactivation extends lifespan and ameliorates age-related diseases

Mercedes Pérez‐Jiménez et al.Feb 6, 2019
Aging and fertility are two interconnected processes. From invertebrates to mammals, absence of the germline increases longevity by a still not fully understood mechanism. We find that loss of function of sul-2, the Caenorhabditis elegans steroid sulfatase (STS), raises the pool of sulfated steroid hormones and increases longevity. This increased longevity requires factors involved in germline-mediated longevity (daf-16, daf-12, kri-1, tcer-1 and daf-36 genes) and is not additive to the longevity of germline-less mutants. Noteworthy, sul-2 mutations do not affect fertility. Thus, STS inactivation affects the germline signalling process regulating longevity. Interestingly, sul-2 is only expressed in sensory neurons, suggesting a regulation of germline longevity by environmental cues. We also demonstrate that treatment with the specific STS inhibitor STX64, reproduces the longevity phenotype of sul-2 mutants. Remarkably, STS inhibition by either mutation or drug treatment ameliorates protein aggregation diseases in C. elegans models of Parkinson, Huntington and Alzheimer, as well as Alzheimer disease in a mammalian model. These results open the possibility of reallocating steroid sulfatase inhibitors for the treatment of aging and aging related diseases.
0

Combined flow cytometry and high throughput image analysis for the study of essential genes in Caenorhabditis elegans

Blanca Hernando‐Rodríguez et al.Nov 14, 2017
Background: The advancement in automated image based microscopy platforms coupled with high throughput liquid workflows has facilitated the design of large scale screens utilizing multicellular model organisms such as Caenorhabditis elegans to identify genetic interactions, therapeutic drugs or disease modifiers. However, the analysis of essential genes has lagged behind because lethal or sterile mutations pose a bottleneck for high throughput approaches. Results: In C. elegans, non-conditional lethal mutations can be maintained in heterozygosis using chromosome balancers, commonly labelled with GFP in the pharynx. Moreover gene-expression is typically monitored by the use of fluorescent reporters marked with the same fluorophore. Therefore, the separation of the different populations of animals at early larval stages represents a challenge. Here, we develop a sorting strategy capable of selecting homozygous mutants carrying a GFP stress reporter from GFP-balanced animals at early larval stages. Because sorting is not completely error-free, we develop an automated high-throughput image-analysis protocol that identifies and discards animals carrying the chromosome balancer. We demonstrate the experimental usefulness of combining sorting of homozygous lethal mutants and automated image-analysis in a functional genomic RNAi screen for genes that genetically interact with mitochondrial prohibitin (PHB). Lack of PHB results in embryonic lethality, while, homozygous PHB deletion mutants develop into sterile adults due to maternal contribution and strongly induce the mitochondrial unfolded protein response (UPRmt). In a chromosome-wide RNAi screen for C. elegans genes having human orthologues, we uncover both, known and new PHB genetic interactors affecting the UPRmt and growth. Conclusions: A systematic way to analyse genetic interactions of essential genes in multicellular organisms is lacking. The method presented here allows the study of balanced lethal mutations in a high-throughput manner and can be easily adapted depending on the user's requirements. Therefore, it will serve as a useful resource for the C. elegans community for probing new biological aspects of essential nematode genes as well as the generation of more comprehensive genetic networks.
23

Serial co-expression analysis of host factors from SARS-CoV viruses highly converges with former high-throughput screenings and proposes key regulators and co-option of cellular pathways

Antonio Pérez‐Pulido et al.Jul 28, 2020
The current genomics era is bringing an unprecedented growth in the amount of gene expression data, only comparable to the exponential growth of sequences in databases during the last decades. This data now allows the design of secondary analyses that take advantage of this information to create new knowledge through specific computational approaches. One of these feasible analyses is the evaluation of the expression level for a gene through a series of different conditions or cell types. Based on this idea, we have developed ASACO, Automatic and Serial Analysis of CO-expression, which performs expression profiles for a given gene along hundreds of normalized and heterogeneous transcriptomics experiments and discover other genes that show either a similar or an inverse behavior. It might help to discover co-regulated genes, and even common transcriptional regulators in any biological model, including human diseases or microbial infections. The present SARS-CoV-2 pandemic is an opportunity to test this novel approach due to the wealth of data that is being generated, which could be used for validating results. In addition, new cell mechanisms identified could become new therapeutic targets. Thus, we have identified 35 host factors in the literature putatively involved in the infectious cycle of SARS-CoV and/or SARS-CoV-2 and searched for genes tightly co-expressed with them. We have found around 1900 co-expressed genes whose assigned functions are strongly related to viral cycles. Moreover, this set of genes heavily overlap with those identified by former laboratory high-throughput screenings (with p-value near 0). Some of these genes aim to cellular structures such as the stress granules, which could be essential for the virus replication and thereby could constitute potential targets in the current fight against the virus. Additionally, our results reveal a series of common transcription regulators, involved in immune and inflammatory responses, that might be key virus targets to induce the coordinated expression of SARS-CoV-2 host factors. All of this proves that ASACO can discover gene co-regulation networks with potential for proposing new genes, pathways and regulators participating in particular biological systems.ASACO identifies regulatory associations of genes using public transcriptomics data.ASACO highlights new cell functions likely involved in the infection of coronavirus.Comparison with high-throughput screenings validates candidates proposed by ASACO.Genes co-expressed with host's genes used by SARS-CoV-2 are related to stress granules.