Abstract Molecular pathways regulating brown adipocyte formation and metabolism can be exploited as targets for the treatment of obesity and disorders of glucose and lipid metabolism such as type-2 diabetes. Investigations in this direction require adequate cell models for brown adipocytes and their precursors. We report the establishment of a novel clonal cell line derived from defined Lin − Sca1 + adipocyte precursors from murine interscapular brown fat. In contrast to most currently available lines, immortalization was achieved by serial passaging without viral or genetic manipulation. Instead, the media were supplemented with basic fibroblast growth factor, which was required for the maintenance of stable long-term growth and immature morphology. BATkl2 cells differentiated to adipocytes with high efficiency upon standard adipogenic induction independently of PPARg agonists and even at higher passage numbers. BATkl2 adipocytes showed readily detectable Uncoupling protein 1 (Ucp1) protein expression and acutely responded to norepinephrine with increased Ucp1 mRNA expression, lipolysis and uncoupled mitochondrial respiration. Highly efficient siRNA-mediated knockdown was demonstrated in the growth state as well as in differentiating adipocytes, whereas plasmid DNA transfection was achieved in immature cells. These features make the BATkl2 cell line an attractive brown (pre)-adipocyte cell model.