Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
NE
Naoko Emura
Author with expertise in Molecular Mechanisms of Plant Development and Regulation
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
2
(0% Open Access)
Cited by:
0
h-index:
5
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Seasonal stability and dynamics of DNA methylation in plants in a natural environment

Tasuku Ito et al.Mar 29, 2019
Organisms survive in naturally fluctuating environments by responding to long-term signals, such as seasonality, by filtering out short-term noise. DNA methylation has been considered a stable epigenetic mark but has also been reported to change in response to experimental manipulations of biotic and abiotic factors. However, it is unclear how they behave in natural environments. Here, we analyzed seasonal patterns of genome-wide DNA methylation at a single-base resolution using a single clone from a natural population of the perennial Arabidopsis halleri. The genome-wide pattern of DNA methylation was primarily stable, and most of the repetitive regions were methylated across the year. Although the proportion was small, we detected seasonally methylated cytosines (SeMCs) in the genome. SeMCs in the different contexts showed distinct seasonal patterns of methylation. SeMCs in CHH context were detected predominantly at repetitive sequences in intergenic regions. Additionally, we found that CHH methylation within AhgFLC locus showed a seasonal pattern that was negatively associated with changes in gene expression. Gene-body CG methylation (gbM) itself was generally stable across seasons, but the levels of gbM were positively associated with seasonal stability of RNA expression of the genes. These results suggest the existence of two distinct aspects of DNA methylation in natural environments: sources of epigenetic variation and epigenetic marks for stable gene expression.
0

Cold suppresses virus accumulation and alters the host transcriptomic response in the turnip mosaic virus Ì¶ Arabidopsis halleri system

Mie Honjo et al.Jan 18, 2025
Abstract Since plant viruses cause lifelong infections, virus-plant interactions are exposed to large temperature fluctuations in evergreen perennials. In such circumstances, virus-plant interactions are expected to change significantly between the warm and cold seasons. However, few studies have investigated the effects of cold temperatures on virus-plant interactions. Here, we show that in a persistent infection system of the turnip mosaic virus (TuMV) -Arabidopsis halleri, cold temperatures lead to slow viral replication/spreading within the host, slow attenuation of host symptoms, and slow cold-specific transcriptomic responses. Many differentially expressed genes (DEGs) were detected between virus-inoculated and mock-inoculated plants under warm and cold conditions; however, the sets of DEGs and response timings were temperature-dependent. Under cold temperatures, the expression of photosynthesis-related genes decreased in the early stages of infection. However, it recovered to the same level as that in uninfected plants in the later stages. In contrast, the transcriptomic changes under warm conditions suggest that viral infections cause auxin-signaling disruption. These responses coincided with the inhibition of host growth. We identified 6 cold- and 38 warm-specific DEGs, that changed their expression in response to TuMV infection under more than half of the conditions for either cold or warm temperatures. Further validation of the putative relationships between transcriptomic and phenotypic responses of the host is required. Our findings on temperature-dependent host responses at both symptomatic and transcriptomic levels help us understand how warm and cold temperatures affect virus-plant interactions in seasonal environments.