EW
Evan Witt
Author with expertise in Genome Evolution and Polyploidy in Plants
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
1
h-index:
6
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
11

Single-cell RNA-sequencing reveals pre-meiotic X-chromosome dosage compensation inDrosophila testis

Evan Witt et al.Feb 6, 2021
Abstract Dosage compensation (DC) is a mechanism by which X chromosome transcription is equalized in the somatic cells of both males and females. In male fruit flies, expression levels of the X-chromosome are increased two-fold to compensate for their single X chromosome. In testis, dosage compensation is thought to cease during meiosis, however, the timing and degree of the resulting transcriptional suppression is difficult to separate from global meiotic downregulation of each chromosome. To address this, we analyzed testis single-cell RNA-sequencing (scRNA-seq) data from two Drosophila melanogaster strains. We found evidence that the X chromosome is equally transcriptionally active as autosomes in somatic and pre-meiotic cells, and less transcriptionally active than autosomes in meiotic and post-meiotic cells. In cells experiencing dosage compensation, close proximity to MSL (male-specific lethal) chromatin entry sites (CES) correlates with increased X chromosome transcription. We found low or undetectable level of germline expression of most msl genes, mle, roX1 and roX2 via sequencing or RNA-FISH, and no evidence of germline nuclear roX1/2 localization. Our results suggest that, although DC occurs in somatic and premeiotic germ cells in Drosophila testis, there might be non-canonical factors involved in the dosage compensation. The single-cell expression patterns and enrichment statistics of detected genes can be explored interactively in our database: https://zhao.labapps.rockefeller.edu/gene-expr/ .
11
Citation1
0
Save
6

Transcription factors drive opposite relationships between gene age and tissue specificity in male and female Drosophila gonads

Evan Witt et al.Dec 9, 2020
Abstract Evolutionarily young genes are usually preferentially expressed in the testis across species. While it is known that older genes are generally more broadly expressed than younger genes, the properties that shaped this pattern are unknown. Older genes may gain expression across other tissues uniformly, or faster in certain tissues than others. Using Drosophila gene expression data, we confirmed previous findings that younger genes are disproportionately testis-biased and older genes are disproportionately ovary-biased. We found that the relationship between gene age and expression is stronger in the ovary than any other tissue, and weakest in testis. We performed ATAC-seq on Drosophila testis and found that while genes of all ages are more likely to have open promoter chromatin in testis than in ovary, promoter chromatin alone does not explain the ovary-bias of older genes. Instead, we found that upstream transcription factor (TF) expression is highly predictive of gene expression in ovary, but not in testis. In ovary, TF expression is more predictive of gene expression than open promoter chromatin, whereas testis gene expression is similarly influenced by both TF expression and open promoter chromatin. We propose that the testis is uniquely able to expresses younger genes controlled by relatively few TFs, while older genes with more TF partners are broadly expressed with peak expression most likely in ovary. The testis allows widespread baseline expression that is relatively unresponsive to regulatory changes, whereas the ovary transcriptome is more responsive to trans-regulation and has a higher ceiling for gene expression.
1

Transcriptional and mutational signatures of the aging germline

Evan Witt et al.Nov 22, 2021
Abstract Aging is a complex biological process that is accompanied by changes in gene expression and mutational load. In many species, including humans, older fathers pass on more paternally-derived de novo mutations; however, the cellular basis and cell types driving this pattern are still unclear. To explore the root causes of this phenomenon, we performed single-cell RNA-sequencing (scRNA-seq) on testes from young and old male Drosophila, as well as genomic sequencing (DNA-seq) on somatic tissues from the same flies. We found that early germ cells from old and young flies enter spermatogenesis with similar mutational loads, but older flies are less able to remove mutations during spermatogenesis. Mutations in old cells may also increase during spermatogenesis. Our data reveal that old and young flies have distinct mutational biases. Many classes of genes show increased post-meiotic expression in the germlines of older flies. Late spermatogenesis-enriched genes have higher dN/dS than early spermatogenesis-enriched genes, supporting the hypothesis that late spermatogenesis is a source of evolutionary innovation. Surprisingly, young fly enriched genes show higher dN/dS than old fly enriched genes. Our results provide novel insights into the role of the germline in de novo mutation.