Abstract Dosage compensation (DC) is a mechanism by which X chromosome transcription is equalized in the somatic cells of both males and females. In male fruit flies, expression levels of the X-chromosome are increased two-fold to compensate for their single X chromosome. In testis, dosage compensation is thought to cease during meiosis, however, the timing and degree of the resulting transcriptional suppression is difficult to separate from global meiotic downregulation of each chromosome. To address this, we analyzed testis single-cell RNA-sequencing (scRNA-seq) data from two Drosophila melanogaster strains. We found evidence that the X chromosome is equally transcriptionally active as autosomes in somatic and pre-meiotic cells, and less transcriptionally active than autosomes in meiotic and post-meiotic cells. In cells experiencing dosage compensation, close proximity to MSL (male-specific lethal) chromatin entry sites (CES) correlates with increased X chromosome transcription. We found low or undetectable level of germline expression of most msl genes, mle, roX1 and roX2 via sequencing or RNA-FISH, and no evidence of germline nuclear roX1/2 localization. Our results suggest that, although DC occurs in somatic and premeiotic germ cells in Drosophila testis, there might be non-canonical factors involved in the dosage compensation. The single-cell expression patterns and enrichment statistics of detected genes can be explored interactively in our database: https://zhao.labapps.rockefeller.edu/gene-expr/ .