KM
Klaudia Maruszczak
Author with expertise in Role of Autophagy in Disease and Health
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
1
h-index:
4
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Dissecting the interactions of PINK1 with the TOM complex in depolarized mitochondria

Klaudia Maruszczak et al.Jan 13, 2022
Abstract Mitochondria dysfunction is involved in the pathomechanism of many illnesses including Parkinson’s disease. PINK1, which is mutated in some cases of familiar Parkinsonism, is a key component in the degradation of damaged mitochondria by mitophagy. The accumulation of PINK1 on the mitochondrial outer membrane (MOM) of compromised organelles is crucial for the induction of mitophagy, but the molecular mechanism of this process is still unresolved. Here, we investigate the association of PINK1 with the TOM complex. We demonstrate that PINK1 heavily relies on the import receptor TOM70 for its association with mitochondria and directly interacts with this receptor. The structural protein TOM7 appears to play only a moderate role in PINK1 association with the TOM complex, probably due to its role in stabilizing this complex. PINK1 requires the TOM40 pore lumen for its stable interaction with the TOM complex and apparently remains there during its further association with the MOM. Overall, this study provides new insights on the role of the individual TOM subunits in the association of PINK1 with the MOM of depolarized mitochondria.
1
Citation1
0
Save
0

PINK1 Regulates Dopamine and Lipids at Mitochondria to Maintain Synapses and Neuronal Function

Christine Bus et al.Oct 22, 2019
Mitochondrial dysfunction contributes to the pathogenesis of Parkinson's disease but it is not clear why inherent mitochondrial defects lead specifically to the death of dopaminergic neurons of the mid brain. PINK1 is mitochondrial kinase and PINK1 mutations cause early onset Parkinson's disease. We found that in neuronal progenitors, PINK1 regulates mitochondrial morphology, mitochondrial contact to the endoplasmic reticulum (ER) and the phosphorylation of Miro1. A compensatory metabolic shift towards lipid synthesis provides mitochondria with the components needed for membrane renewal and oxidative phosphorylation, maintaining the mitochondrial network once mature. Cholesterol is increased by loss of PINK1, promoting overall membrane rigidity. This alters the distribution of phosphorylated DAT at synapses and impairs dopamine uptake. PINK1 is required for the phosphorylation of tyrosine hydroxylase at Ser19, dopamine and calcium homeostasis and dopaminergic pacemaking. We suggest a novel mechanism for PINK1 pathogenicity in Parkinson's disease in addition to but not exclusive of mitophagy. We also provide a basis for potential therapeutics by showing that low doses of the cholesterol depleting drug β-cyclodextrin reverse PINK1-specific phenotypes.
0

Crystal structure and molecular dynamics of human POLDIP2, a multifaceted adaptor protein in metabolism and genome stability

Anastasija Kulik et al.Jul 24, 2020
Abstract Polymerase δ-interacting protein 2 (POLDIP2, PDIP38) is a multifaceted, ‘moonlighting’ protein, involved in binding protein partners from many different cellular processes, including mitochondrial metabolism, DNA replication and repair, and reactive oxygen species generation. POLDIP2 is found in multiple cellular compartments, potentially shuttled depending on its role. How POLDIP2 binds to and coordinates many different proteins is currently unknown. Towards this goal, we present the crystal structure of the ‘mitochondrial’ fragment of POLDIP2 to 2.8 Å. POLDIP2 exhibited a compact two-domain β-strand-rich globular structure, confirmed by circular dichroism and small angle X-ray scattering approaches. POLDIP2 comprised canonical DUF525 (ApaG) and YccV-like domains, but with the conserved domain linker packed tightly, resulting in an ‘extended’ YccV module. A central channel through POLDIP2 was observed which we hypothesise could influence structural changes potentially mediated by redox conditions, following observation of a modified cysteine residue in the channel. Unstructured regions were rebuilt by ab initio modelling to generate a model of full length POLDIP2. Molecular dynamics simulations revealed a highly dynamic N-terminal region tethered to the YccV-domain by an extended linker, potentially facilitating interactions with distal binding partners. Finally we build models of POLDIP2 interacting in complex with two of its partners in genome stability, PrimPol and PCNA. These indicate that dynamic flexibility of the POLDIP2 N-terminal and loop regions are critical to mediate protein-protein interactions.