SO
Shinsuke Ohnuki
Author with expertise in Macromolecular Crystallography Techniques
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
2
(0% Open Access)
Cited by:
0
h-index:
20
/
i10-index:
34
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genetic Profiling of Protein Burden and Nuclear Export Overload

Reiko Kintaka et al.Feb 26, 2020
Overproduction (op) of proteins triggers cellular defects. One of the defined consequences of protein overproduction is the protein burden/cost, which is produced by an overloading of the protein synthesis process. However, the physiology of cells under a protein burden is not well characterized. We performed genetic profiling of protein burden by systematic analysis of genetic interactions between GFP-op, surveying both deletion mutants of nonessential genes and temperature-sensitive mutants of essential genes, in the budding yeast Saccharomyces cerevisiae. To dissect interactions specific to the protein burden, we also performed genetic profiling in cells with overproduction of triple-GFP (tGFP), and the nuclear export signal-containing tGFP (NES-tGFP). The mutants specifically interacted with GFP-op were suggestive of unexpected connections between actin-related processes like polarization and the protein burden, which was supported by morphological analysis. The tGFP-op interactions suggested that this protein probe overloads the proteasome, probably through the formation of intracellular aggregates, whereas those that interacted with NES-tGFP involved genes encoding components of the nuclear export process, providing a resource for further analysis of the protein burden and nuclear export overload.
0

Virtual-freezing fluorescence imaging flow cytometry

Hideharu Mikami et al.Jan 23, 2020
By virtue of the combined merits of flow cytometry and fluorescence microscopy, imaging flow cytometry (IFC) has become an established tool for cell analysis in diverse biomedical fields such as cancer biology, microbiology, immunology, hematology, and stem cell biology. However, the performance and utility of IFC are severely limited by the fundamental trade-off between throughput, sensitivity, and spatial resolution. For example, at high flow speed (i.e., high throughput), the integration time of the image sensor becomes short, resulting in reduced sensitivity or pixel resolution. Here we present an optomechanical imaging method that overcomes the trade-off by virtually "freezing" the motion of flowing cells on the image sensor to effectively achieve 1,000 times longer exposure time for microscopy-grade fluorescence image acquisition. Consequently, it enables high-throughput IFC of single cells at >10,000 cells/s without sacrificing sensitivity and spatial resolution. The availability of numerous information-rich fluorescence cell images allows high-dimensional statistical analysis and accurate classification with deep learning, as evidenced by our demonstration of unique applications in hematology and microbiology.