PD
Phillip Durham
Author with expertise in Clinical Management of Tracheal and Airway Disorders
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
1
h-index:
12
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Harnessing Ultrasound-Stimulated Phase Change Contrast Agents to Improve Antibiotic Efficacy Against Methicillin-Resistant Staphylococcus aureus Biofilms

Phillip Durham et al.Jun 1, 2020
Bacterial biofilms, often associated with chronic infections, respond poorly to antibiotic therapy and frequently require surgical intervention. Biofilms harbor persister cells, metabolically indolent cells, which are tolerant to most conventional antibiotics. In addition, the biofilm matrix can act as a physical barrier, impeding diffusion of antibiotics. Novel therapeutic approaches frequently improve biofilm killing, but usually fail to achieve eradication. Failure to eradicate the biofilm leads to chronic and relapsing infection, associated with major financial healthcare costs and significant morbidity and mortality. We address this problem with a two-pronged strategy using 1) antibiotics that target persister cells and 2) ultrasound-stimulated phase-change contrast agents (US-PCCA), which improve antibiotic penetration. We previously demonstrated that rhamnolipids, produced by Pseudomonas aeruginosa , could induce aminoglycoside uptake in gram-positive organisms, leading to persister cell death. We have also shown that US-PCCA can transiently disrupt biological barriers to improve penetration of therapeutic macromolecules. We hypothesized that combining antibiotics which target persister cells with US-PCCA to improve drug penetration could eradicate methicillin resistant S. aureus (MRSA) biofilms. Aminoglycosides alone or in combination with US-PCCA displayed limited efficacy against MRSA biofilms. In contrast, the anti-persister combination of rhamnolipids and aminoglycosides combined with US-PCCA dramatically reduced biofilm viability, frequently culminating in complete eradication of the biofilm. These data demonstrate that biofilm eradication can be achieved using a combined approach of improving drug penetration of therapeutics that target persister cells.
0
Citation1
0
Save
4

Feasibility of an Inhalable Ultrasound Contrast Agent to Enhance Airway Imaging

Phillip Clapp et al.May 27, 2021
Introduction Ultrasound is a relatively inexpensive and non-ionizing imaging modality, but is under-utilized in large airway assessments due to poor image quality. No commercially available contrast agents currently exist for sonographic evaluation of the respiratory system, nor has a respiratory route of microbubble contrast agent (MCA) administration been previously described for the enhancement of airway imaging. Methods We conducted a feasibility study to assess proof-of-concept for an inhalable ultrasound MCA composed of lipid-encapsulated decaflourobutane gas. The MCA was nebulized and administered as an aerosol through the lumen of an ex vivo porcine trachea, with image enhancement evaluated by comparing images pre- and post-exposure. Additionally, primary human bronchial epithelial (hBE) cells from three donors were differentiated at an air-liquid interface and exposed apically to 25 μL of undiluted MCA or vehicle control to assess contrast agent-induced cytotoxicity and inflammation. Basolateral medium was collected 24-hours post-exposure and lactate dehydrogenase (LDH) and interleukin-8 (IL-8) concentrations were measured as biomarkers of cytotoxicity and inflammation, respectively. Results Contrast microbubbles remained intact following nebulization and enhanced sonographic delineation of ex vivo porcine tracheal walls, indicating adherence of the nebulized MCA to the lumenal mucosa. No significant cytotoxic or inflammatory effects were observed in cultured hBE cells following exposure to MCA. Conclusions We present proof-of-concept for an inhaled MCA for the enhancement of sonographic evaluations of the large airways. Pending further evaluations for safety and effectiveness, inhaled MCA may be feasible for clinical ultrasound applications, such as enhancing ultrasound-guided tracheal intubation, detecting airway bleeds, or monitoring large airway diseases in pediatric populations.
0

Development of an inhalable contrast agent targeting the respiratory tract mucus layer for pulmonary ultrasonic imaging

James Tsuruta et al.Dec 1, 2024
Impaired mucociliary transport is a distinguishing sign of cystic fibrosis, but current methods of evaluation are invasive or expose young patients to ionizing radiation. Contrast-enhanced ultrasound imaging may provide a feasible alternative. We formulated a cationic microbubble ultrasound contrast agent, to optimize adhesion to the respiratory mucus layer when inhaled. Potential toxicity was evaluated in human bronchial epithelial cell (hBEC) cultures following a 24-hour exposure, compared to positive and negative control conditions. In vivo tolerability and pulmonary image enhancement feasibility were evaluated in mice, comparing oropharyngeal administration of contrast agent to saline control. When induced to flow across mucus plated on microscope slides, cationic microbubbles demonstrated greater affinity for target samples than standard microbubbles. Cationic microbubbles elicited no proinflammatory or cytotoxic response in hBECs, nor were any cross-links to the cilia observed. Unlike standard microbubbles, cationic microbubbles mixed into the mucus layer, without epithelial absorption, and were observed to move with the mucus layer by the action of mucociliary transport. When administered to mice, cationic microbubbles enhanced sonographic visualization of the trachea, and were well-tolerated with no adverse effects. This developmental work supports the safety and feasibility of a mucus-targeting contrast agent that may be useful for pulmonary ultrasound applications.