AB
Asmeret Berhe
Author with expertise in Soil Carbon Dynamics and Nutrient Cycling in Ecosystems
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
2,625
h-index:
49
/
i10-index:
101
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Multiple elements of soil biodiversity drive ecosystem functions across biomes

Manuel Delgado‐Baquerizo et al.Feb 3, 2020
+24
C
P
M
The role of soil biodiversity in regulating multiple ecosystem functions is poorly understood, limiting our ability to predict how soil biodiversity loss might affect human wellbeing and ecosystem sustainability. Here, combining a global observational study with an experimental microcosm study, we provide evidence that soil biodiversity (bacteria, fungi, protists and invertebrates) is significantly and positively associated with multiple ecosystem functions. These functions include nutrient cycling, decomposition, plant production, and reduced potential for pathogenicity and belowground biological warfare. Our findings also reveal the context dependency of such relationships and the importance of the connectedness, biodiversity and nature of the globally distributed dominant phylotypes within the soil network in maintaining multiple functions. Moreover, our results suggest that the positive association between plant diversity and multifunctionality across biomes is indirectly driven by soil biodiversity. Together, our results provide insights into the importance of soil biodiversity for maintaining soil functionality locally and across biomes, as well as providing strong support for the inclusion of soil biodiversity in conservation and management programmes. Combining field data from 83 sites on five continents, together with microcosm experiments, the authors show that nutrient cycling, decomposition, plant production and other ecosystem functions are positively associated with a higher diversity of a wide range of soil organisms.
0
Paper
Citation698
0
Save
0

A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry

Ammar Albalasmeh et al.May 8, 2013
T
A
A
A new UV spectrophotometry based method for determining the concentration and carbon content of carbohydrate solution was developed. This method depends on the inherent UV absorption potential of hydrolysis byproducts of carbohydrates formed by reaction with concentrated sulfuric acid (furfural derivatives). The proposed method is a major improvement over the widely used Phenol–Sulfuric Acid method developed by DuBois, Gilles, Hamilton, Rebers, and Smith (1956). In the old method, furfural is allowed to develop color by reaction with phenol and its concentration is detected by visible light absorption. Here we present a method that eliminates the coloration step and avoids the health and environmental hazards associated with phenol use. In addition, avoidance of this step was shown to improve measurement accuracy while significantly reducing waiting time prior to light absorption reading. The carbohydrates for which concentrations and carbon content can be reliably estimated with this new rapid Sulfuric Acid–UV technique include: monosaccharides, disaccharides and polysaccharides with very high molecular weight.
0

Beyond clay: towards an improved set of variables for predicting soil organic matter content

Craig Rasmussen et al.Feb 1, 2018
+14
W
K
C
Improved quantification of the factors controlling soil organic matter (SOM) stabilization at continental to global scales is needed to inform projections of the largest actively cycling terrestrial carbon pool on Earth, and its response to environmental change. Biogeochemical models rely almost exclusively on clay content to modify rates of SOM turnover and fluxes of climate-active CO2 to the atmosphere. Emerging conceptual understanding, however, suggests other soil physicochemical properties may predict SOM stabilization better than clay content. We addressed this discrepancy by synthesizing data from over 5,500 soil profiles spanning continental scale environmental gradients. Here, we demonstrate that other physicochemical parameters are much stronger predictors of SOM content, with clay content having relatively little explanatory power. We show that exchangeable calcium strongly predicted SOM content in water-limited, alkaline soils, whereas with increasing moisture availability and acidity, iron- and aluminum-oxyhydroxides emerged as better predictors, demonstrating that the relative importance of SOM stabilization mechanisms scales with climate and acidity. These results highlight the urgent need to modify biogeochemical models to better reflect the role of soil physicochemical properties in SOM cycling.
0
Paper
Citation548
0
Save
0

The Significance of the Erosion-induced Terrestrial Carbon Sink

Asmeret Berhe et al.Apr 1, 2007
M
J
J
A
Estimating carbon (C) balance in erosional and depositional landscapes is complicated by the effects of soil redistribution on both net primary productivity (NPP) and decomposition. Recent studies are contradictory as to whether soil erosion does or does not constitute a C sink. Here we clarify the conceptual basis for how erosion can constitute a C sink. Specifically, the criterion for an erosional C sink is that dynamic replacement of eroded C, and reduced decomposition rates in depositional sites, must together more than compensate for erosional losses. This criterion is in fact met in many erosional settings, and thus erosion and deposition can make a net positive contribution to C sequestration. We show that, in a cultivated Mississippi watershed and a coastal California watershed, the magnitude of the erosion-induced C sink is likely to be on the order of 1% of NPP and 16% of eroded C. Although soil erosion has serious environmental impacts, the annual erosion-induced C sink offsets up to 10% of the global fossil fuel emissions of carbon dioxide for 2005.
0
Paper
Citation437
0
Save
0

Anthropogenic Drivers of Ecosystem Change: an Overview

Gerald Nelson et al.Jan 1, 2006
+16
A
E
G
Nelson, G. C., E. Bennett, A. A. Berhe, K. Cassman, R. DeFries, T. Dietz, A. Dobermann, A. Dobson, A. Janetos, M. Levy, D. Marco, N. Nakicenovic, B. O’Neill, R. Norgaard, G. Petschel-Held, D. Ojima, P. Pingali, R. Watson, and M. Zurek. 2006. Anthropogenic drivers of ecosystem change: an overview. Ecology and Society 11(2): 29.
0
Paper
Citation374
0
Save
5

Temperature increases soil respiration across ecosystem types and soil development, but soil properties determine the magnitude of this effect

Marina Dacal et al.Oct 7, 2020
+4
J
M
M
Abstract Soil carbon losses to the atmosphere, via soil heterotrophic respiration, are expected to increase in response to global warming, resulting in a positive carbon-climate feedback. Despite the well-known suite of abiotic and biotic factors controlling soil respiration, much less is known about how the magnitude of soil respiration responses to temperature changes over soil development and across contrasting soil properties. Here, we investigated the role of soil development stage and soil properties in driving the responses of soil heterotrophic respiration to increasing temperatures. We incubated soils from eight chronosequences ranging in soil age from hundreds to million years, and encompassing a wide range of vegetation types, climatic conditions, and chronosequences origins, at three assay temperatures (5, 15 and 25°C). We found a consistent positive effect of assay temperature on soil respiration rates across the eight chronosequences evaluated. However, soil properties such as organic carbon concentration, texture, pH, phosphorus content, and microbial biomass determined the magnitude of temperature effects on soil respiration. Finally, we observed a positive effect of soil development stage on soil respiration that did not alter the magnitude of assay temperature effects. Our work reveals that key soil properties alter the magnitude of the positive effect of temperature on soil respiration found across ecosystem types and soil development stages. This information is essential to better understand the magnitude of the carbon-climate feedback, and thus to establish accurate greenhouse gas emission targets.
5
Paper
Citation2
0
Save
3

Soil depth gradients in microbial growth kinetics under deeply- vs. shallow-rooted plants

Kweon Min et al.Apr 26, 2021
+5
M
E
K
A bstract Climate-smart land management practices that replace shallow-rooted annual crop systems with deeply-rooted perennial plants can contribute to soil carbon sequestration. However, deep soil carbon accrual may be influenced by active microbial biomass and their capacity to assimilate fresh carbon at depth. Incorporating active microbial biomass, dormancy and growth in microbially-explicit models can improve our ability to predict soil’s capacity to store carbon. But, so far, the microbial parameters that are needed for such modeling are poorly constrained, especially in deep soil layers. Here, we investigated whether a change in crop rooting depth affects microbial growth kinetics in deep soils compared to surface soils. We used a lab incubation experiment and growth kinetics model to estimate how microbial parameters vary along 240 cm of soil depth in profiles under shallow- (soy) and deeply-rooted plants (switchgrass) 11 years after plant cover conversion. We also assessed resource origin and availability (total organic carbon, 14 C, dissolved organic carbon, specific UV absorbance, total nitrogen, total dissolved nitrogen) along the soil profiles to examine associations between soil chemical and biological parameters. Even though root biomass was higher and rooting depth was deeper under switchgrass than soy, resource availability and microbial growth parameters were generally similar between vegetation types. Instead, depth significantly influenced soil chemical and biological parameters. For example, resource availability, and total and relative active microbial biomass decreased with soil depth. Decreases in the relative active microbial biomass coincided with increased lag time (response time to external carbon inputs) along the soil profiles. Even at a depth of 210-240 cm, microbial communities were activated to grow by added resources within a day. Maximum specific growth rate decreased to a depth of 90 cm and then remained consistent in deeper layers. Our findings show that > 10 years of vegetation and rooting depth changes may not be long enough to alter microbial growth parameters, and suggest that at least a portion of the microbial community in deep soils can grow rapidly in response to added resources. Our study determined microbial growth parameters that can be used in microbially-explicit models to simulate carbon dynamics in deep soil layers.
3
Paper
Citation1
0
Save